随机算法 (Fall 2015)/Problem Set 2: Difference between revisions
imported>Etone Created page with "== Problem 1== For any <math>\alpha\ge 1</math>, a cut <math>C</math> in an undirected (multi)graph <math>G(V,E)</math>is called an <math>\alpha</math>-min-cut if <math>|C|\le..." |
imported>Etone No edit summary |
||
Line 5: | Line 5: | ||
* Use the above bound to estimate the number of distinct <math>\alpha</math>-min cuts in <math>G</math>. | * Use the above bound to estimate the number of distinct <math>\alpha</math>-min cuts in <math>G</math>. | ||
== Problem 2 (<font color=red>optional</font>) == | |||
Consider the Min-Cut problem in edge-weighted graphs. Describe how you would generalize Karger's contraction algorithm to this case. What is the running time and success probability of your algorithm. | |||
==Problem 3 == | |||
Suppose that we flip a fair coin <math>n</math> times to obtain <math>n</math> random bits. Consider all <math>m={n\choose 2}</math> pairs of these bits in some order. Let <math>Y_i</math> be the exclusive-or of the <math>i</math>th pair of bits, and let <math>Y=\sum_{i=1}^m Y_i</math> be the number of <math>Y_i</math> that equal 1. | |||
# Show that the <math>Y_i</math> are '''NOT''' mutually independent. | |||
# Show that the <math>Y_i</math> satisfy the property <math>\mathbf{E}[Y_iY_j]=\mathbf{E}[Y_i]\mathbf{E}[Y_j]</math>. | |||
# Compute <math>\mathbf{Var}[Y]</math>. | |||
# Using Chebyshev's inequality, prove a bound on <math>\Pr[|Y-\mathbf{E}[Y]|\ge n]</math>. |
Revision as of 03:25, 6 November 2015
Problem 1
For any [math]\displaystyle{ \alpha\ge 1 }[/math], a cut [math]\displaystyle{ C }[/math] in an undirected (multi)graph [math]\displaystyle{ G(V,E) }[/math]is called an [math]\displaystyle{ \alpha }[/math]-min-cut if [math]\displaystyle{ |C|\le\alpha|C^*| }[/math] where [math]\displaystyle{ C^* }[/math] is a min-cut in [math]\displaystyle{ G }[/math].
- Give a lower bound to the probability that a single iteration of Karger's Random Contraction algorithm returns an [math]\displaystyle{ \alpha }[/math]-min-cut in a graph [math]\displaystyle{ G(V,E) }[/math] of [math]\displaystyle{ n }[/math] vertices.
- Use the above bound to estimate the number of distinct [math]\displaystyle{ \alpha }[/math]-min cuts in [math]\displaystyle{ G }[/math].
Problem 2 (optional)
Consider the Min-Cut problem in edge-weighted graphs. Describe how you would generalize Karger's contraction algorithm to this case. What is the running time and success probability of your algorithm.
Problem 3
Suppose that we flip a fair coin [math]\displaystyle{ n }[/math] times to obtain [math]\displaystyle{ n }[/math] random bits. Consider all [math]\displaystyle{ m={n\choose 2} }[/math] pairs of these bits in some order. Let [math]\displaystyle{ Y_i }[/math] be the exclusive-or of the [math]\displaystyle{ i }[/math]th pair of bits, and let [math]\displaystyle{ Y=\sum_{i=1}^m Y_i }[/math] be the number of [math]\displaystyle{ Y_i }[/math] that equal 1.
- Show that the [math]\displaystyle{ Y_i }[/math] are NOT mutually independent.
- Show that the [math]\displaystyle{ Y_i }[/math] satisfy the property [math]\displaystyle{ \mathbf{E}[Y_iY_j]=\mathbf{E}[Y_i]\mathbf{E}[Y_j] }[/math].
- Compute [math]\displaystyle{ \mathbf{Var}[Y] }[/math].
- Using Chebyshev's inequality, prove a bound on [math]\displaystyle{ \Pr[|Y-\mathbf{E}[Y]|\ge n] }[/math].