高级算法 (Fall 2017): Difference between revisions

From TCS Wiki
Jump to navigation Jump to search
imported>Etone
No edit summary
imported>Etone
No edit summary
Line 100: Line 100:
# [[高级算法 (Fall 2017)/''Lovász'' Local Lemma|''Lovász'' Local Lemma]]
# [[高级算法 (Fall 2017)/''Lovász'' Local Lemma|''Lovász'' Local Lemma]]
#:  [[高级算法 (Fall 2017)/Nonconstructive Proof of Lovász Local Lemma|Classic Proof of Lovász Local Lemma]]
#:  [[高级算法 (Fall 2017)/Nonconstructive Proof of Lovász Local Lemma|Classic Proof of Lovász Local Lemma]]
# Rounding Dynamic Programs (Approximation Algorithms textbook Chapter 8, 9.)
# Rounding Dynamic Programs
# Rounding Linear Programs (Approximation Algorithms textbook Chapter 14, 16.)
# Rounding Linear Programs
# The Primal-Dual Schema (Approximation Algorithms textbook Chapter 12, 15, 24.)
# The Primal-Dual Schema
# Rounding Semidefinite Programs (Approximation Algorithms textbook Chapter 26.)
# Rounding Semidefinite Programs
# Constraint Satisfaction Problem, Sum-of-Squares SDP (See assignments for reading meterials.)
# Constraint Satisfaction Problem, Sum-of-Squares SDP
# [[随机算法 (Fall 2017)/Fingerprinting|Fingerprinting]]  
# [[随机算法 (Fall 2017)/Fingerprinting|Fingerprinting]]  
# Hashing and Sketching  
# Hashing and Sketching  

Revision as of 08:02, 1 August 2017

高级算法
Advanced Algorithms
Instructor
尹一通
Email yitong.yin@gmail.com yinyt@nju.edu.cn
office 计算机系 804
Class
Class meetings Thursday, 8am-10am
逸B-105
Office hours TBA
计算机系 804
Textbooks
Motwani and Raghavan.
Randomized Algorithms.
Cambridge Univ Press, 1995.
Vazirani.
Approximation Algorithms.
Springer-Verlag, 2001.
v · d · e

This is the webpage for the Advanced Algorithms class of fall 2017. Students who take this class should check this page periodically for content updates and new announcements.

Announcement

Course info

  • Instructor : 尹一通,
  • email: yitong.yin@gmail.com, yinyt@nju.edu.cn
  • office: 计算机系 804.
  • Class meeting: Thursday 8am-10am, 逸B-105.
  • Office hour: TBA, 计算机系 804.

Syllabus

先修课程 Prerequisites

  • 必须:离散数学,概率论,线性代数。
  • 推荐:算法设计与分析。

Course materials

成绩 Grades

  • 课程成绩:本课程将会有若干次作业和一次期末考试。最终成绩将由平时作业成绩和期末考试成绩综合得出。
  • 迟交:如果有特殊的理由,无法按时完成作业,请提前联系授课老师,给出正当理由。否则迟交的作业将不被接受。

学术诚信 Academic Integrity

学术诚信是所有从事学术活动的学生和学者最基本的职业道德底线,本课程将不遗余力的维护学术诚信规范,违反这一底线的行为将不会被容忍。

作业完成的原则:署你名字的工作必须由你完成。允许讨论,但作业必须独立完成,并在作业中列出所有参与讨论的人。不允许其他任何形式的合作——尤其是与已经完成作业的同学“讨论”。

本课程将对剽窃行为采取零容忍的态度。在完成作业过程中,对他人工作(出版物、互联网资料、其他人的作业等)直接的文本抄袭和对关键思想、关键元素的抄袭,按照 ACM Policy on Plagiarism的解释,都将视为剽窃。剽窃者成绩将被取消。如果发现互相抄袭行为, 抄袭和被抄袭双方的成绩都将被取消。因此请主动防止自己的作业被他人抄袭。

学术诚信影响学生个人的品行,也关乎整个教育系统的正常运转。为了一点分数而做出学术不端的行为,不仅使自己沦为一个欺骗者,也使他人的诚实努力失去意义。让我们一起努力维护一个诚信的环境。

Assignments

Lecture Notes

  1. Min-Cut and Max-Cut
    Probability basics
  2. Greedy and Local Search
    Computational complexity
  3. Lovász Local Lemma
    Classic Proof of Lovász Local Lemma
  4. Rounding Dynamic Programs
  5. Rounding Linear Programs
  6. The Primal-Dual Schema
  7. Rounding Semidefinite Programs
  8. Constraint Satisfaction Problem, Sum-of-Squares SDP
  9. Fingerprinting
  10. Hashing and Sketching
  11. Concentration of measure
  12. Dimension Reduction and Locality-Sensitive Hashing
    Jelani Nelson's note on Johnson-Lindenstrauss Theorem
    An introduction of LSH
  13. The Monte Carlo Method and Approximate Counting
  14. MCMC: Markov Chain Monte Carlo methods