高级算法 (Fall 2017)/Finite Field Basics: Difference between revisions
Jump to navigation
Jump to search
imported>Etone Created page with "=Field= {|class="wikitable" !rowspan="9"|'''''field''''' !rowspan="8"|'''''commutative<br>ring''''' !rowspan="7"|'''''ring''''' !rowspan="4"|'''''abelian<br>group''''' !rowspa..." |
imported>Etone |
||
Line 1: | Line 1: | ||
=Field= | =Field= | ||
Let <math>S</math> be a set, closed under two binary operations <math>+</math> (addition) and <math>\cdot</math> (multiplication). It gives us the following algebraic structures if the corresponding set of axioms are satisfied. | |||
{|class="wikitable" | {|class="wikitable" | ||
!rowspan="9"|'''''field''''' | !rowspan="9"|'''''field''''' | ||
Line 32: | Line 33: | ||
|9. Every non-zero element has a '''multiplicative inverse''': <math>\forall x\in S\setminus\{0\}, \exists x^{-1}\in S, \text{ s.t. } x\cdot x^{-1}= x^{-1}\cdot x=1.</math> | |9. Every non-zero element has a '''multiplicative inverse''': <math>\forall x\in S\setminus\{0\}, \exists x^{-1}\in S, \text{ s.t. } x\cdot x^{-1}= x^{-1}\cdot x=1.</math> | ||
|} | |} | ||
The semigroup, monoid, group and abelian group are given by <math>(S,+)</math>, and the ring, commutative ring, and field are given by <math>(S,+,\cdot)</math>. |
Revision as of 14:25, 13 September 2017
Field
Let [math]\displaystyle{ S }[/math] be a set, closed under two binary operations [math]\displaystyle{ + }[/math] (addition) and [math]\displaystyle{ \cdot }[/math] (multiplication). It gives us the following algebraic structures if the corresponding set of axioms are satisfied.
field | commutative ring |
ring | abelian group |
group | monoid | semigroup | 1. Addition is associative: [math]\displaystyle{ \forall x,y,z\in S, (x+y)+z= x+(y+z). }[/math] |
---|---|---|---|---|---|---|---|
2. Existence of additive identity 0: [math]\displaystyle{ \forall x\in S, x+0= 0+x=x. }[/math] | |||||||
3. Everyone has an additive inverse: [math]\displaystyle{ \forall x\in S, \exists -x\in S, \text{ s.t. } x+(-x)= (-x)+x=0. }[/math] | |||||||
4. Addition is commutative: [math]\displaystyle{ \forall x,y\in S, x+y= y+x. }[/math] | |||||||
5. Multiplication distributes over addition: [math]\displaystyle{ \forall x,y,z\in S, x\cdot(y+z)= x\cdot y+x\cdot z }[/math] and [math]\displaystyle{ (y+z)\cdot x= y\cdot x+z\cdot x. }[/math] | |||||||
6. Multiplication is associative: [math]\displaystyle{ \forall x,y,z\in S, (x\cdot y)\cdot z= x\cdot (y\cdot z). }[/math] | |||||||
7. Existence of multiplicative identity 1: [math]\displaystyle{ \forall x\in S, x\cdot 1= 1\cdot x=x. }[/math] | |||||||
8. Multiplication is commutative: [math]\displaystyle{ \forall x,y\in S, x\cdot y= y\cdot x. }[/math] | |||||||
9. Every non-zero element has a multiplicative inverse: [math]\displaystyle{ \forall x\in S\setminus\{0\}, \exists x^{-1}\in S, \text{ s.t. } x\cdot x^{-1}= x^{-1}\cdot x=1. }[/math] |
The semigroup, monoid, group and abelian group are given by [math]\displaystyle{ (S,+) }[/math], and the ring, commutative ring, and field are given by [math]\displaystyle{ (S,+,\cdot) }[/math].