高级算法 (Fall 2017)/Finite Field Basics: Difference between revisions
imported>Etone |
imported>Etone |
||
Line 45: | Line 45: | ||
* '''Infinite fields''': <math>\mathbb{Q}</math>, <math>\mathbb{R}</math>, <math>\mathbb{C}</math> are fields. The integer set <math>\mathbb{Z}</math> is a commutative ring but is not a field. | * '''Infinite fields''': <math>\mathbb{Q}</math>, <math>\mathbb{R}</math>, <math>\mathbb{C}</math> are fields. The integer set <math>\mathbb{Z}</math> is a commutative ring but is not a field. | ||
* '''Finite fields''': Finite fields are called '''Galois fields'''. The number of elements of a finite field is called its '''order'''. A finite field of order <math>q</math>, is denoted as <math>\mathsf{GF}(q)</math>. | * '''Finite fields''': Finite fields are called '''Galois fields'''. The number of elements of a finite field is called its '''order'''. A finite field of order <math>q</math>, is denoted as <math>\mathsf{GF}(q)</math>. | ||
**<math>{\mathbb{Z}_p}</math>: For any integer <math>n>1</math>, <math>\mathbb{Z}_n=\{0,1,\ldots,n-1\}</math> (where addition <math>+</math> and multiplication <math>\cdot</math> are defined modulo <math>n</math>) is a commutative ring. Sometimes, this ring is denoted as <math>\mathbb{Z}/n\mathbb{Z}</math> and is called the '''quotient ring'''. In particular, for '''prime''' <math>p</math>, <math>\mathbb{Z}_p</math> is a field. This can be verified by [http://en.wikipedia.org/wiki/Fermat%27s_little_theorem Fermat's little theorem]. | **<math>{\mathbb{Z}_p}</math>: For any integer <math>n>1</math>, <math>\mathbb{Z}_n=\{0,1,\ldots,n-1\}</math> under modulo- | ||
(where addition <math>+</math> and multiplication <math>\cdot</math> are defined modulo <math>n</math>) is a commutative ring. Sometimes, this ring is denoted as <math>\mathbb{Z}/n\mathbb{Z}</math> and is called the '''quotient ring'''. In particular, for '''prime''' <math>p</math>, <math>\mathbb{Z}_p</math> is a field. This can be verified by [http://en.wikipedia.org/wiki/Fermat%27s_little_theorem Fermat's little theorem]. | |||
** <math>\mathsf{GF}(2^n)</math>: | ** <math>\mathsf{GF}(2^n)</math>: | ||
** <math>\mathsf{GF}(p^n)</math>: | ** <math>\mathsf{GF}(p^n)</math>: | ||
** Other examples: | ** Other examples: |
Revision as of 04:39, 15 September 2017
Field
Let [math]\displaystyle{ S }[/math] be a set, closed under two binary operations [math]\displaystyle{ + }[/math] (addition) and [math]\displaystyle{ \cdot }[/math] (multiplication). It gives us the following algebraic structures if the corresponding set of axioms are satisfied.
Structures | Axioms | Operations | ||||||
---|---|---|---|---|---|---|---|---|
field | commutative ring |
ring | abelian group |
group | monoid | semigroup | 1. Addition is associative: [math]\displaystyle{ \forall x,y,z\in S, (x+y)+z= x+(y+z). }[/math] | [math]\displaystyle{ + }[/math] |
2. Existence of additive identity 0: [math]\displaystyle{ \forall x\in S, x+0= 0+x=x. }[/math] | ||||||||
3. Everyone has an additive inverse: [math]\displaystyle{ \forall x\in S, \exists -x\in S, \text{ s.t. } x+(-x)= (-x)+x=0. }[/math] | ||||||||
4. Addition is commutative: [math]\displaystyle{ \forall x,y\in S, x+y= y+x. }[/math] | ||||||||
5. Multiplication distributes over addition: [math]\displaystyle{ \forall x,y,z\in S, x\cdot(y+z)= x\cdot y+x\cdot z }[/math] and [math]\displaystyle{ (y+z)\cdot x= y\cdot x+z\cdot x. }[/math] | [math]\displaystyle{ +,\cdot }[/math] | |||||||
6. Multiplication is associative: [math]\displaystyle{ \forall x,y,z\in S, (x\cdot y)\cdot z= x\cdot (y\cdot z). }[/math] | [math]\displaystyle{ \cdot }[/math] | |||||||
7. Existence of multiplicative identity 1: [math]\displaystyle{ \forall x\in S, x\cdot 1= 1\cdot x=x. }[/math] | ||||||||
8. Multiplication is commutative: [math]\displaystyle{ \forall x,y\in S, x\cdot y= y\cdot x. }[/math] | ||||||||
9. Every non-zero element has a multiplicative inverse: [math]\displaystyle{ \forall x\in S\setminus\{0\}, \exists x^{-1}\in S, \text{ s.t. } x\cdot x^{-1}= x^{-1}\cdot x=1. }[/math] |
The semigroup, monoid, group and abelian group are given by [math]\displaystyle{ (S,+) }[/math], and the ring, commutative ring, and field are given by [math]\displaystyle{ (S,+,\cdot) }[/math].
Examples:
- Infinite fields: [math]\displaystyle{ \mathbb{Q} }[/math], [math]\displaystyle{ \mathbb{R} }[/math], [math]\displaystyle{ \mathbb{C} }[/math] are fields. The integer set [math]\displaystyle{ \mathbb{Z} }[/math] is a commutative ring but is not a field.
- Finite fields: Finite fields are called Galois fields. The number of elements of a finite field is called its order. A finite field of order [math]\displaystyle{ q }[/math], is denoted as [math]\displaystyle{ \mathsf{GF}(q) }[/math].
- [math]\displaystyle{ {\mathbb{Z}_p} }[/math]: For any integer [math]\displaystyle{ n\gt 1 }[/math], [math]\displaystyle{ \mathbb{Z}_n=\{0,1,\ldots,n-1\} }[/math] under modulo-
(where addition [math]\displaystyle{ + }[/math] and multiplication [math]\displaystyle{ \cdot }[/math] are defined modulo [math]\displaystyle{ n }[/math]) is a commutative ring. Sometimes, this ring is denoted as [math]\displaystyle{ \mathbb{Z}/n\mathbb{Z} }[/math] and is called the quotient ring. In particular, for prime [math]\displaystyle{ p }[/math], [math]\displaystyle{ \mathbb{Z}_p }[/math] is a field. This can be verified by Fermat's little theorem.
- [math]\displaystyle{ \mathsf{GF}(2^n) }[/math]:
- [math]\displaystyle{ \mathsf{GF}(p^n) }[/math]:
- Other examples: