高级算法 (Fall 2017)/Problem Set 2: Difference between revisions

From TCS Wiki
Jump to navigation Jump to search
imported>Etone
Created page with "== Problem 1== Let <math>G(V,E)</math> be an undirected graph with positive edge weights <math>w:E\to\mathbb{Z}^+</math>. Given a partition of <math>V</math> into <math>k</mat..."
 
imported>Etone
 
Line 16: Line 16:


== Problem 2==
== Problem 2==
Given <math>m</math> subsets <math>S_1,S_2,\ldots, S_m\subseteq U</math> of a universe <math>U</math> of size <math>n</math>, we want to find a <math>C\subseteq\{1,2,\ldots, {\color{red}m}\}</math> of fixed size <math>k=|C|</math> with the maximum '''coverage''' <math>\left|\bigcup_{i\in C}S_i\right|</math>.
Given <math>m</math> subsets <math>S_1,S_2,\ldots, S_m\subseteq U</math> of a universe <math>U</math> of size <math>n</math>, we want to find a <math>C\subseteq\{1,2,\ldots, {m}\}</math> of fixed size <math>k=|C|</math> with the maximum '''coverage''' <math>\left|\bigcup_{i\in C}S_i\right|</math>.


* Give a poly-time greedy algorithm for the problem. Prove that the approximation ratio is <math>1-(1-1/k)^k>1-1/e</math>.
* Give a poly-time greedy algorithm for the problem. Prove that the approximation ratio is <math>1-(1-1/k)^k>1-1/e</math>.

Latest revision as of 08:16, 25 October 2017

Problem 1

Let [math]\displaystyle{ G(V,E) }[/math] be an undirected graph with positive edge weights [math]\displaystyle{ w:E\to\mathbb{Z}^+ }[/math]. Given a partition of [math]\displaystyle{ V }[/math] into [math]\displaystyle{ k }[/math] disjoint subsets [math]\displaystyle{ S_1,S_2,\ldots,S_k }[/math], we define

[math]\displaystyle{ w(S_1,S_2,\ldots,S_k)=\sum_{uv\in E\atop \exists i\neq j: u\in S_i,v\in S_j}w(uv) }[/math]

as the cost of the [math]\displaystyle{ k }[/math]-cut [math]\displaystyle{ \{S_1,S_2,\ldots,S_k\} }[/math]. Our goal is to find a [math]\displaystyle{ k }[/math]-cut with maximum cost.

  1. Give a poly-time greedy algorithm for finding the weighted max [math]\displaystyle{ k }[/math]-cut. Prove that the approximation ratio is [math]\displaystyle{ (1-1/k) }[/math].
  2. Consider the following local search algorithm for the weighted max cut (max 2-cut).
Fill in the blank parenthesis. Give an analysis of the running time of the algorithm. And prove that the approximation ratio is 0.5.
start with an arbitrary bipartition of [math]\displaystyle{ V }[/math] into disjoint [math]\displaystyle{ S_0,S_1 }[/math];
while (true) do
   if [math]\displaystyle{ \exists i\in\{0,1\} }[/math] and [math]\displaystyle{ v\in S_i }[/math] such that (______________)
      then [math]\displaystyle{ v }[/math] leaves [math]\displaystyle{ S_i }[/math] and joins [math]\displaystyle{ S_{1-i} }[/math];
      continue;
   end if
   break;
end

Problem 2

Given [math]\displaystyle{ m }[/math] subsets [math]\displaystyle{ S_1,S_2,\ldots, S_m\subseteq U }[/math] of a universe [math]\displaystyle{ U }[/math] of size [math]\displaystyle{ n }[/math], we want to find a [math]\displaystyle{ C\subseteq\{1,2,\ldots, {m}\} }[/math] of fixed size [math]\displaystyle{ k=|C| }[/math] with the maximum coverage [math]\displaystyle{ \left|\bigcup_{i\in C}S_i\right| }[/math].

  • Give a poly-time greedy algorithm for the problem. Prove that the approximation ratio is [math]\displaystyle{ 1-(1-1/k)^k\gt 1-1/e }[/math].

Problem 3

We consider minimum makespan scheduling on parallel identical machines when jobs are subject to precedence constraints.

We still want to schedule [math]\displaystyle{ n }[/math] jobs [math]\displaystyle{ j=1,2,\ldots, n }[/math] on [math]\displaystyle{ m }[/math] identical machines, where job [math]\displaystyle{ j }[/math] has processing time [math]\displaystyle{ p_j }[/math]. But now a partial order [math]\displaystyle{ \preceq }[/math] is defined on jobs, so that if [math]\displaystyle{ j\prec k }[/math] then job [math]\displaystyle{ j }[/math] must be completely finished before job [math]\displaystyle{ k }[/math] begins. The following is a variant of the List algorithm for this problem: we still assume that the input is a list of [math]\displaystyle{ n }[/math] jobs with processing times [math]\displaystyle{ p_1,p_2,\ldots, p_n }[/math].

whenever a machine becomes idle
    assign the next available job on the list to the machine;

Here a job [math]\displaystyle{ k }[/math] is available if all jobs [math]\displaystyle{ j\prec k }[/math] have already been completely processed.

  • Prove that the approximation ratio is 2.