组合数学 (Fall 2019)/Problem Set 1: Difference between revisions
imported>Haimin No edit summary |
imported>Haimin No edit summary |
||
Line 20: | Line 20: | ||
== Problem 4 == | == Problem 4 == | ||
Let <math>(a_n)</math> be a sequence of numbers satisfying the recurrence relation: <math> a_n=p a_{n-1}-(p-q)q a_{n-2}</math> with <math>a_0=</math> and <math>a_1=</math>, where <math>p< | Let <math>(a_n)</math> be a sequence of numbers satisfying the recurrence relation: <math> a_n=p \dot a_{n-1}-(p-q)\dot q \dot a_{n-2}</math> with <math>a_0=</math> and <math>a_1=</math>, where <math>p</math> and <math>q</math> are distinct nonzero constants. Solve the recurrence relation. | ||
== Problem 5 == | == Problem 5 == | ||
== Problem 6 == | == Problem 6 == | ||
Let <math>f(n,r,s)<\math> denote the number of subsets <math>S< | Let <math>f(n,r,s)<\math> denote the number of subsets <math>S</math> of <math>[2n]</math> consisting of <math>r</math> odd and <math>s</math> even integers, with no two elements of S differing by 1. Give a bijective proof that <math>f(n,r,s)=\binom{n-r}{s}\binom{n-s}{r}</math>. |
Revision as of 14:15, 16 September 2019
Under constructed
- 每道题目的解答都要有完整的解题过程。中英文不限。
Problem 1
Suppose that there are [math]\displaystyle{ n }[/math] red balls and another [math]\displaystyle{ m }[/math] balls which are distinct and not red. Balls with the same color are indistinguishable. Determine the number of ways to select [math]\displaystyle{ r }[/math] balls from these [math]\displaystyle{ n+m }[/math] balls, in each of the following cases:
- [math]\displaystyle{ r\leq m,r\leq n }[/math];
- [math]\displaystyle{ n\leq r\leq m }[/math];
- [math]\displaystyle{ m\leq r\leq n }[/math].
Problem 2
李雷和韩梅梅竞选学生会主席,韩梅梅获得选票 [math]\displaystyle{ p }[/math] 张,李雷获得选票 [math]\displaystyle{ q }[/math] 张,[math]\displaystyle{ p\gt q }[/math]。我们将总共的 [math]\displaystyle{ p+q }[/math] 张选票一张一张的点数,有多少种选票的排序方式使得在整个点票过程中,韩梅梅的票数一直高于李雷的票数?等价地,假设选票均匀分布的随机排列,以多大概率在整个点票过程中,韩梅梅的票数一直高于李雷的票数。
Problem 3
Find the generating function for the sequence [math]\displaystyle{ (a_n) }[/math] in each of the following cases: [math]\displaystyle{ a_n }[/math] is the number of ways of distributing [math]\displaystyle{ n }[/math] identical objects into:
- 4 distinct boxes;
- 4 distinct boxes so that no box is empty;
- 4 identical boxes;
- 4 identical boxes so that no box is empty.
Problem 4
Let [math]\displaystyle{ (a_n) }[/math] be a sequence of numbers satisfying the recurrence relation: [math]\displaystyle{ a_n=p \dot a_{n-1}-(p-q)\dot q \dot a_{n-2} }[/math] with [math]\displaystyle{ a_0= }[/math] and [math]\displaystyle{ a_1= }[/math], where [math]\displaystyle{ p }[/math] and [math]\displaystyle{ q }[/math] are distinct nonzero constants. Solve the recurrence relation.
Problem 5
Problem 6
Let [math]\displaystyle{ f(n,r,s)\lt \math\gt denote the number of subsets \lt math\gt S }[/math] of [math]\displaystyle{ [2n] }[/math] consisting of [math]\displaystyle{ r }[/math] odd and [math]\displaystyle{ s }[/math] even integers, with no two elements of S differing by 1. Give a bijective proof that [math]\displaystyle{ f(n,r,s)=\binom{n-r}{s}\binom{n-s}{r} }[/math].