组合数学 (Fall 2019)/Problem Set 2: Difference between revisions
imported>Haimin No edit summary |
imported>Haimin No edit summary |
||
Line 17: | Line 17: | ||
*直接写出三种颜色出现的次数一样多的次数。可以借助一些数学软件如Mathematica的帮助。 | *直接写出三种颜色出现的次数一样多的次数。可以借助一些数学软件如Mathematica的帮助。 | ||
== Problem | == Problem 3 == | ||
* What is the probability that the cycle containing 1 has length k? | * What is the probability that the cycle containing 1 has length <math>k</math>? | ||
* What is the expected number of cycles? | * What is the expected number of cycles? | ||
== Problem | == Problem 4 == | ||
For any <math>k</math>-size subset of vertices set <math>\{1,2,\dots,n\}</math>, there are <math>T_{n,k}</math> forests on the <math>n</math> vertices with exactly <math>m</math> connected components that each element of <math>A</math> is in a different component. | |||
* Prove <math>T_{n,k}=\sum_{i=0}^{n-k}\binom{n-k}{i}T_{n-1,k-1+i}</math>. | * Prove <math>T_{n,k}=\sum_{i=0}^{n-k}\binom{n-k}{i}T_{n-1,k-1+i}</math>. | ||
* Prove <math>T_{n,k}=k\cdot n^{n-k-1}</math>. | * Prove <math>T_{n,k}=k\cdot n^{n-k-1}</math>. | ||
== Problem 5 == | |||
Give a '''dynamical programming''' algorithm that given as input a bipartite graph <math>G(U,V,E)</math> where <math>|U|=|V|=n</math>, returns the number of perfect matchings in <math>G</math> within time <math>O(n^22^n)</math>. |
Revision as of 06:33, 15 October 2019
Under Construction
Problem 1
假设我们班上有[math]\displaystyle{ n+2 }[/math]个人,其中两个人是DNA完全相同的双胞胎。我们收上[math]\displaystyle{ n+2 }[/math]份作业后,将这些作业打乱后发回给全班同学,每人一份。要求每个人不可以收到自己那一份作业或者与自己DNA相同的人的作业。令[math]\displaystyle{ T_n }[/math]表示满足这个要求的发回作业的方式,问:
- 计算[math]\displaystyle{ T_n }[/math]是多少;
- 在[math]\displaystyle{ n\to\infty }[/math]时,随机重排并发回作业后,满足上述要求的概率是多少。
Problem 2
你要设计一个标志,以下形状中的12条等长线段可以分别由红、绿、蓝三色之一构成。要求考虑这个形状的“转动”和“反转”两种对称。
__ __| |__ |__ __| |__|
- 定义对称构成的群,可以通过生成元定义,也可以直接把元素都写出来;
- 写出cycle index和pattern inventory;
- 直接写出三种颜色出现的次数一样多的次数。可以借助一些数学软件如Mathematica的帮助。
Problem 3
- What is the probability that the cycle containing 1 has length [math]\displaystyle{ k }[/math]?
- What is the expected number of cycles?
Problem 4
For any [math]\displaystyle{ k }[/math]-size subset of vertices set [math]\displaystyle{ \{1,2,\dots,n\} }[/math], there are [math]\displaystyle{ T_{n,k} }[/math] forests on the [math]\displaystyle{ n }[/math] vertices with exactly [math]\displaystyle{ m }[/math] connected components that each element of [math]\displaystyle{ A }[/math] is in a different component.
- Prove [math]\displaystyle{ T_{n,k}=\sum_{i=0}^{n-k}\binom{n-k}{i}T_{n-1,k-1+i} }[/math].
- Prove [math]\displaystyle{ T_{n,k}=k\cdot n^{n-k-1} }[/math].
Problem 5
Give a dynamical programming algorithm that given as input a bipartite graph [math]\displaystyle{ G(U,V,E) }[/math] where [math]\displaystyle{ |U|=|V|=n }[/math], returns the number of perfect matchings in [math]\displaystyle{ G }[/math] within time [math]\displaystyle{ O(n^22^n) }[/math].