组合数学 (Fall 2023)/Problem Set 2: Difference between revisions
Line 14: | Line 14: | ||
<math>f_k=\sum_{i=k}^n(-1)^{i-k}\binom{i}{k}g_i</math> | <math>f_k=\sum_{i=k}^n(-1)^{i-k}\binom{i}{k}g_i</math> | ||
and | and | ||
<math>f_{\geq k}=\sum_{i=k}^n(-1)^{i-k}\binom{i-1}{k-1}g_i</math> | <math>f_{\geq k}=\sum_{i=k}^n(-1)^{i-k}\binom{i-1}{k-1}g_i.</math> | ||
where | where | ||
<math>g_i=\sum_{I\subseteq\{1,...,n\},|I|=i }|A_I|</math> | <math>g_i=\sum_{I\subseteq\{1,...,n\},|I|=i }|A_I|.</math> |
Revision as of 12:52, 13 April 2023
Problem 1
Problem 2
Give [math]\displaystyle{ n,m,k }[/math], find the number of integer solutions to the following equation: [math]\displaystyle{ a_1+a_2+...+a_n=m, \forall 1\leq i\leq n, 0\leq a_i\lt k }[/math]. You should give a formula and explain your answer.
Problem 3
Let [math]\displaystyle{ S=\{P_1,...,P_n\} }[/math] be a set of properties, and let [math]\displaystyle{ f_k }[/math] (respectively, [math]\displaystyle{ f_{\geq k} }[/math]) denote the number of objects in a finite set [math]\displaystyle{ U }[/math] that have exactly [math]\displaystyle{ k }[/math] (respectively, at least [math]\displaystyle{ k }[/math]) of the properties. Let [math]\displaystyle{ A_i }[/math] denote the set of objects satisfies [math]\displaystyle{ P_i }[/math] in [math]\displaystyle{ U }[/math], for any [math]\displaystyle{ I\subseteq\{1,...,n\} }[/math], we denote [math]\displaystyle{ A_I=\bigcap_{i\in I}A_i }[/math] with the convention that [math]\displaystyle{ A_\emptyset=U }[/math]. Show that
[math]\displaystyle{ f_k=\sum_{i=k}^n(-1)^{i-k}\binom{i}{k}g_i }[/math] and [math]\displaystyle{ f_{\geq k}=\sum_{i=k}^n(-1)^{i-k}\binom{i-1}{k-1}g_i. }[/math]
where [math]\displaystyle{ g_i=\sum_{I\subseteq\{1,...,n\},|I|=i }|A_I|. }[/math]