组合数学 (Fall 2023)/Problem Set 2: Difference between revisions

From TCS Wiki
Jump to navigation Jump to search
Roundgod (talk | contribs)
Gispzjz (talk | contribs)
Line 12: Line 12:
Show that
Show that


<math>f_k=\sum_{i=k}^n(-1)^{i-k}\binom{i}{k}g_i</math>
* <math>f_k=\sum_{i=k}^n(-1)^{i-k}\binom{i}{k}g_i</math>
and
<math>f_{\geq k}=\sum_{i=k}^n(-1)^{i-k}\binom{i-1}{k-1}g_i.</math>
* <math>f_{\geq k}=\sum_{i=k}^n(-1)^{i-k}\binom{i-1}{k-1}g_i.</math>


where  
where  

Revision as of 12:54, 13 April 2023

Problem 1

Problem 2

Give [math]\displaystyle{ n,m,k }[/math], find the number of integer solutions to the following equation: [math]\displaystyle{ a_1+a_2+...+a_n=m, \forall 1\leq i\leq n, 0\leq a_i\lt k }[/math]. You should give a formula and explain your answer.

Problem 3

Let [math]\displaystyle{ S=\{P_1,...,P_n\} }[/math] be a set of properties, and let [math]\displaystyle{ f_k }[/math] (respectively, [math]\displaystyle{ f_{\geq k} }[/math]) denote the number of objects in a finite set [math]\displaystyle{ U }[/math] that satisfy exactly [math]\displaystyle{ k }[/math] (respectively, at least [math]\displaystyle{ k }[/math]) of the properties. Let [math]\displaystyle{ A_i }[/math] denote the set of objects that satisfy [math]\displaystyle{ P_i }[/math] in [math]\displaystyle{ U }[/math], for any [math]\displaystyle{ I\subseteq\{1,...,n\} }[/math], we denote [math]\displaystyle{ A_I=\bigcap_{i\in I}A_i }[/math] with the convention that [math]\displaystyle{ A_\emptyset=U }[/math]. Show that

  • [math]\displaystyle{ f_k=\sum_{i=k}^n(-1)^{i-k}\binom{i}{k}g_i }[/math]
  • [math]\displaystyle{ f_{\geq k}=\sum_{i=k}^n(-1)^{i-k}\binom{i-1}{k-1}g_i. }[/math]

where [math]\displaystyle{ g_i=\sum_{I\subseteq\{1,...,n\},|I|=i }|A_I|. }[/math]

Problem 4

For any [math]\displaystyle{ k }[/math]-size subset [math]\displaystyle{ A }[/math] of vertices set [math]\displaystyle{ \{1,2,\dots,n\} }[/math], there are [math]\displaystyle{ T_{n,k} }[/math] forests on the [math]\displaystyle{ n }[/math] vertices with exactly [math]\displaystyle{ k }[/math] connected components that each element of [math]\displaystyle{ A }[/math] is in a different component.

  • Prove [math]\displaystyle{ T_{n,k}=\sum_{i=0}^{n-k}\binom{n-k}{i}T_{n-1,k+i-1} }[/math].
  • Prove [math]\displaystyle{ T_{n,k}=k\cdot n^{n-k-1} }[/math].