概率论与数理统计 (Spring 2023)/Problem Set 4: Difference between revisions

From TCS Wiki
Jump to navigation Jump to search
No edit summary
Line 19: Line 19:


<li>
<li>
[<strong>Independence</strong>]Let <math>X</math> and <math>Y</math> be independent and identically distributed continuous random variables with CDF <math>F</math> and PDF <math>f</math>. We aim to determine the density function of <math>V = \max{X,Y}</math> and <math>U = \min{X,Y}</math>.
[<strong>Independence</strong>] Let <math>X</math> and <math>Y</math> be independent and identically distributed continuous random variables with CDF <math>F</math> and PDF <math>f</math>. We aim to determine the density function of <math>V = \max{X,Y}</math> and <math>U = \min{X,Y}</math>.
</li>
</li>



Revision as of 09:29, 22 May 2023

  • 目前作业非最终版本!
  • 每道题目的解答都要有完整的解题过程,中英文不限。
  • 我们推荐大家使用LaTeX, markdown等对作业进行排版。

Assumption throughout Problem Set 4

Without further notice, we are working on probability space [math]\displaystyle{ (\Omega,\mathcal{F},\mathbf{Pr}) }[/math].

Without further notice, we assume that the expectation of random variables are well-defined.

The term [math]\displaystyle{ \log }[/math] used in this context refers to the natural logarithm.

Problem 1 (Continuous Random Variables, 30 points)

  • [Density function] Determine the value of [math]\displaystyle{ C }[/math] such that [math]\displaystyle{ f(x) = C\exp(-x-e^{-x}), x\in \mathbb{R} }[/math] is a probability density function (PDF) for a continuous random variable.
  • [Independence] Let [math]\displaystyle{ X }[/math] and [math]\displaystyle{ Y }[/math] be independent and identically distributed continuous random variables with CDF [math]\displaystyle{ F }[/math] and PDF [math]\displaystyle{ f }[/math]. We aim to determine the density function of [math]\displaystyle{ V = \max{X,Y} }[/math] and [math]\displaystyle{ U = \min{X,Y} }[/math].
  • [Random process] Given a real number [math]\displaystyle{ U\lt 1 }[/math] as input of the following process, find out the expected returning value.
    Algorithm
    Input: real numbers [math]\displaystyle{ U \lt 1 }[/math];

    initialize [math]\displaystyle{ x = 1 }[/math] and [math]\displaystyle{ count = 0 }[/math];
    while [math]\displaystyle{ x \gt U }[/math] do
    • choose [math]\displaystyle{ y \in (0,1) }[/math] uniformly at random;
    • update [math]\displaystyle{ x = x * y }[/math] and [math]\displaystyle{ count = count + 1 }[/math];
    return [math]\displaystyle{ count }[/math];
  • [Random semicircle] We sample [math]\displaystyle{ n }[/math] points within a circle [math]\displaystyle{ C=\{(x,y) \in \mathbb{R}^2 \mid x^2+y^2 \le 1\} }[/math] independently and uniformly at random (i.e., the density function [math]\displaystyle{ f(x,y) \propto 1_{(x,y) \in C} }[/math]). Find out the probability that they all lie within some semicircle with radius [math]\displaystyle{ 1 }[/math]. (Hint: you may apply the technique of change of variables, see function of random variables or Chapter 4.7 in [GS])