组合数学 (Fall 2023)/Problem Set 4: Difference between revisions

From TCS Wiki
Jump to navigation Jump to search
Gispzjz (talk | contribs)
Created page with "== Problem 1 == Prove that * <math>R(4,3)\leq 9</math>. (Hint: Proof by contradiction. Color the edges of <math>K_9</math> in red and blue, and assume that there are no red triangles and no blue <math>4</math>-cliques. Try to determine the number of red and blue edges adjacent to each vertex) * <math>R(4,4)\leq 18</math>. ==Problem 2== We color each non-empty subset of <math>[n]=\{1,2,\ldots,n\}</math> with one of the <math>r</math> colors in <math>[r]</math>. Show tha..."
 
Gispzjz (talk | contribs)
Line 19: Line 19:


== Problem 5 ==
== Problem 5 ==
Use the '''König-Egerváry theorem''' to prove the followings
* Every bipartite graph <math>G</math>

Revision as of 14:17, 8 June 2023

Problem 1

Prove that

  • [math]\displaystyle{ R(4,3)\leq 9 }[/math]. (Hint: Proof by contradiction. Color the edges of [math]\displaystyle{ K_9 }[/math] in red and blue, and assume that there are no red triangles and no blue [math]\displaystyle{ 4 }[/math]-cliques. Try to determine the number of red and blue edges adjacent to each vertex)
  • [math]\displaystyle{ R(4,4)\leq 18 }[/math].

Problem 2

We color each non-empty subset of [math]\displaystyle{ [n]=\{1,2,\ldots,n\} }[/math] with one of the [math]\displaystyle{ r }[/math] colors in [math]\displaystyle{ [r] }[/math]. Show that for any finite [math]\displaystyle{ r }[/math] there is a finite [math]\displaystyle{ N }[/math] such that for all [math]\displaystyle{ n\ge N }[/math], for any [math]\displaystyle{ r }[/math]-coloring of non-empty subsets of [math]\displaystyle{ [n] }[/math], there always exist [math]\displaystyle{ 1\le i\lt j\lt k\le n }[/math] such that the intervals [math]\displaystyle{ [i,j)=\{i,i+1,\ldots, j-1\} }[/math], [math]\displaystyle{ [j,k)=\{j,j+1,\ldots, k-1\} }[/math] and [math]\displaystyle{ [i,k)=\{i,i+1,\ldots, k-1\} }[/math] are all assigned with the same color.

Problem 3

(Frankl 1986)

Let [math]\displaystyle{ \mathcal{F}\subseteq {[n]\choose k} }[/math] be a [math]\displaystyle{ k }[/math]-uniform family, and suppose that it satisfies that [math]\displaystyle{ A\cap B \not\subset C }[/math] for any [math]\displaystyle{ A,B,C\in\mathcal{F} }[/math].

  • Fix any [math]\displaystyle{ B\in\mathcal{F} }[/math]. Show that the family [math]\displaystyle{ \{A\cap B\mid A\in\mathcal{F}, A\neq B\} }[/math] is an anti chain.
  • Show that [math]\displaystyle{ |\mathcal{F}|\le 1+{k\choose \lfloor k/2\rfloor} }[/math].

Problem 4

Suppose that [math]\displaystyle{ M,M' }[/math] are matchings in a bipartite graph [math]\displaystyle{ G }[/math] with bipartition [math]\displaystyle{ A,B }[/math]. Suppose that all the vertices of [math]\displaystyle{ S\subseteq A }[/math] are matched by [math]\displaystyle{ M }[/math] and that all the vertices of [math]\displaystyle{ T\subseteq B }[/math] are matched by [math]\displaystyle{ M' }[/math]. Prove that [math]\displaystyle{ G }[/math] contains a matching that matches all the vertices of [math]\displaystyle{ S \cup T }[/math].

Problem 5

Use the König-Egerváry theorem to prove the followings

  • Every bipartite graph [math]\displaystyle{ G }[/math]