高级算法 (Fall 2023)/Problem Set 2: Difference between revisions
Jump to navigation
Jump to search
Zouzongrui (talk | contribs) Created page with "*每道题目的解答都要有完整的解题过程,中英文不限。 *我们推荐大家使用LaTeX, markdown等对作业进行排版。 == Problem 1 (Min-cut/Max-cut) == * ['''Counting <math>\alpha</math>-approximate min-cut'''] For any '''<math>\alpha \ge 1</math>''', a cut is called an '''<math>\alpha</math>'''-approximate min-cut in a multigraph '''<math>G</math>''' if the number of edges in it is at most '''<math>\alpha</math>''' times that of the min-cut...." |
Zouzongrui (talk | contribs) |
||
Line 3: | Line 3: | ||
*我们推荐大家使用LaTeX, markdown等对作业进行排版。 | *我们推荐大家使用LaTeX, markdown等对作业进行排版。 | ||
== Problem 1 ( | == Problem 1 (Adjacency matrix) == | ||
Let <math>A</math> be the adjacency matrix of an undirected connected graph <math>G</math>, and <math>\alpha_1</math> be its largest eigenvalue. | |||
* ['''Lowerbounding <math>\alpha_1</math>'''] We proved <math>\alpha_1 \le d_{\mathrm{max}}</math> in class. Show that <math>\alpha_1 \ge d_{\mathrm{avg}}</math> where <math>d_{\mathrm{avg}}:=\frac{2|E|}{|V|}</math> is the average degree of the graph. | |||
Revision as of 07:25, 24 November 2023
- 每道题目的解答都要有完整的解题过程,中英文不限。
- 我们推荐大家使用LaTeX, markdown等对作业进行排版。
Problem 1 (Adjacency matrix)
Let [math]\displaystyle{ A }[/math] be the adjacency matrix of an undirected connected graph [math]\displaystyle{ G }[/math], and [math]\displaystyle{ \alpha_1 }[/math] be its largest eigenvalue.
- [Lowerbounding [math]\displaystyle{ \alpha_1 }[/math]] We proved [math]\displaystyle{ \alpha_1 \le d_{\mathrm{max}} }[/math] in class. Show that [math]\displaystyle{ \alpha_1 \ge d_{\mathrm{avg}} }[/math] where [math]\displaystyle{ d_{\mathrm{avg}}:=\frac{2|E|}{|V|} }[/math] is the average degree of the graph.