Randomized Algorithms (Spring 2010)/Tail inequalities: Difference between revisions
Jump to navigation
Jump to search
imported>WikiSysop |
imported>WikiSysop |
||
Line 31: | Line 31: | ||
:Let <math>X_1, X_2, \ldots, X_n</math> be independent Poisson trials, <math>X=\sum_{i=1}^n X_i</math>, and <math>\mu=\mathbf{E}[X]</math>. Then | :Let <math>X_1, X_2, \ldots, X_n</math> be independent Poisson trials, <math>X=\sum_{i=1}^n X_i</math>, and <math>\mu=\mathbf{E}[X]</math>. Then | ||
:1. for <math>0<\delta\le 1</math>, | :1. for <math>0<\delta\le 1</math>, | ||
::<math>\Pr[X\ge (1+\delta)\mu]< | ::<math>\Pr[X\ge (1+\delta)\mu]<\exp\left(-\frac{\mu\delta^2}{3}\right);</math> | ||
::<math>\Pr[X\le (1-\delta)\mu]< | ::<math>\Pr[X\le (1-\delta)\mu]<\exp\left(-\frac{\mu\delta^2}{2}\right);</math> | ||
:2. for <math>t>0</math>, | :2. for <math>t>0</math>, | ||
::<math>\Pr[X\ge\mu+t]\le | ::<math>\Pr[X\ge\mu+t]\le \exp\left(-\frac{2t^2}{n}\right);</math> | ||
::<math>\Pr[X\le\mu-t]\le | ::<math>\Pr[X\le\mu-t]\le \exp\left(-\frac{2t^2}{n}\right);</math> | ||
:3. for <math>t\ge 2e\mu</math>, | :3. for <math>t\ge 2e\mu</math>, | ||
::<math>\Pr[X\ge t]\le 2^{-t}.</math> | ::<math>\Pr[X\ge t]\le 2^{-t}.</math> |
Revision as of 04:30, 26 January 2010
Select the Median
The selection problem is the problem of finding the [math]\displaystyle{ k }[/math]th smallest element in a set [math]\displaystyle{ S }[/math]. A typical case of selection problem is finding the median, the [math]\displaystyle{ (\lceil n/2\rceil) }[/math]th element in the sorted order of [math]\displaystyle{ S }[/math].
The median can be found in [math]\displaystyle{ O(n\log n) }[/math] time by sorting. There is a linear-time deterministic algorithm, "median of medians" algorithm, which is very sophisticated. Here we introduce a much simpler randomized algorithm which also runs in linear time. The idea of this randomized algorithm is by sampling.
Randomized median algorithm
Analysis
Chernoff Bound
Chernoff bound (upper tail):
|
Chernoff bound (lower tail):
|
Useful forms of the Chernoff bound
|