Randomized Algorithms (Spring 2010)/Tail inequalities: Difference between revisions

From TCS Wiki
Jump to navigation Jump to search
imported>WikiSysop
imported>WikiSysop
Line 12: Line 12:


{|border="1"
{|border="1"
|'''Chernoff bound (upper tail):'''
|'''Chernoff bound (the upper tail):'''
:Let  <math>X_1, X_2, \ldots, X_n</math> be independent Poisson trials, <math>X=\sum_{i=1}^n X_i</math>, and <math>\mu=\mathbf{E}[X]</math>.  
:Let  <math>X=\sum_{i=1}^n X_i</math>, where <math>X_1, X_2, \ldots, X_n</math> are independent Poisson trials. Let <math>\mu=\mathbf{E}[X]</math>.  
:Then for any <math>\delta>0</math>,
:Then for any <math>\delta>0</math>,
::<math>\Pr[X\ge (1+\delta)\mu]<\left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu}.</math>
::<math>\Pr[X\ge (1+\delta)\mu]<\left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu}.</math>
Line 20: Line 20:


{|border="1"
{|border="1"
|'''Chernoff bound (lower tail):'''
|'''Chernoff bound (the lower tail):'''
:Let  <math>X_1, X_2, \ldots, X_n</math> be independent Poisson trials, <math>X=\sum_{i=1}^n X_i</math>, and <math>\mu=\mathbf{E}[X]</math>.  
:Let  <math>X=\sum_{i=1}^n X_i</math>, where <math>X_1, X_2, \ldots, X_n</math> are independent Poisson trials. Let <math>\mu=\mathbf{E}[X]</math>.  
:Then for any <math>0<\delta<1</math>,
:Then for any <math>0<\delta<1</math>,
::<math>\Pr[X\le (1-\delta)\mu]<\left(\frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}}\right)^{\mu}.</math>
::<math>\Pr[X\le (1-\delta)\mu]<\left(\frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}}\right)^{\mu}.</math>
|}
{|border="1"
|'''Chernoff-Hoeffding bound:'''
:Let  <math>X=\sum_{i=1}^n X_i</math>, where for each <math>1\le i\le n</math>, <math>X_i</math> is independently distributed over the range <math>[0,1]</math>. Let <math>\mu=\mathbf{E}[X]</math>.
:Then for any <math>\delta>0</math>,
::<math>\Pr[X\ge (1+\delta)\mu]<\left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu};</math>
:and for any <math>0<\delta<1</math>,
::<math>\Pr[X\ge (1-\delta)\mu]<\left(\frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}}\right)^{\mu}.</math>
|}
|}


Line 29: Line 39:
{|border="1"
{|border="1"
|'''Useful forms of the Chernoff bound'''
|'''Useful forms of the Chernoff bound'''
:Let  <math>X_1, X_2, \ldots, X_n</math> be independent Poisson trials, <math>X=\sum_{i=1}^n X_i</math>, and <math>\mu=\mathbf{E}[X]</math>. Then  
:Let  <math>X=\sum_{i=1}^n X_i</math>, where for each <math>1\le i\le n</math>, <math>X_i</math> is independently distributed over the range <math>[0,1]</math>. Let <math>\mu=\mathbf{E}[X]</math>. Then
:1. for <math>0<\delta\le 1</math>,
:1. for <math>0<\delta\le 1</math>,
::<math>\Pr[X\ge (1+\delta)\mu]<\exp\left(-\frac{\mu\delta^2}{3}\right);</math>
::<math>\Pr[X\ge (1+\delta)\mu]<\exp\left(-\frac{\mu\delta^2}{3}\right);</math>

Revision as of 05:20, 26 January 2010

Select the Median

The selection problem is the problem of finding the [math]\displaystyle{ k }[/math]th smallest element in a set [math]\displaystyle{ S }[/math]. A typical case of selection problem is finding the median, the [math]\displaystyle{ (\lceil n/2\rceil) }[/math]th element in the sorted order of [math]\displaystyle{ S }[/math].

The median can be found in [math]\displaystyle{ O(n\log n) }[/math] time by sorting. There is a linear-time deterministic algorithm, "median of medians" algorithm, which is very sophisticated. Here we introduce a much simpler randomized algorithm which also runs in linear time. The idea of this randomized algorithm is by sampling.

Randomized median algorithm

Analysis

Chernoff Bound

Chernoff bound (the upper tail):
Let [math]\displaystyle{ X=\sum_{i=1}^n X_i }[/math], where [math]\displaystyle{ X_1, X_2, \ldots, X_n }[/math] are independent Poisson trials. Let [math]\displaystyle{ \mu=\mathbf{E}[X] }[/math].
Then for any [math]\displaystyle{ \delta\gt 0 }[/math],
[math]\displaystyle{ \Pr[X\ge (1+\delta)\mu]\lt \left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu}. }[/math]


Chernoff bound (the lower tail):
Let [math]\displaystyle{ X=\sum_{i=1}^n X_i }[/math], where [math]\displaystyle{ X_1, X_2, \ldots, X_n }[/math] are independent Poisson trials. Let [math]\displaystyle{ \mu=\mathbf{E}[X] }[/math].
Then for any [math]\displaystyle{ 0\lt \delta\lt 1 }[/math],
[math]\displaystyle{ \Pr[X\le (1-\delta)\mu]\lt \left(\frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}}\right)^{\mu}. }[/math]


Chernoff-Hoeffding bound:
Let [math]\displaystyle{ X=\sum_{i=1}^n X_i }[/math], where for each [math]\displaystyle{ 1\le i\le n }[/math], [math]\displaystyle{ X_i }[/math] is independently distributed over the range [math]\displaystyle{ [0,1] }[/math]. Let [math]\displaystyle{ \mu=\mathbf{E}[X] }[/math].
Then for any [math]\displaystyle{ \delta\gt 0 }[/math],
[math]\displaystyle{ \Pr[X\ge (1+\delta)\mu]\lt \left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu}; }[/math]
and for any [math]\displaystyle{ 0\lt \delta\lt 1 }[/math],
[math]\displaystyle{ \Pr[X\ge (1-\delta)\mu]\lt \left(\frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}}\right)^{\mu}. }[/math]


Useful forms of the Chernoff bound
Let [math]\displaystyle{ X=\sum_{i=1}^n X_i }[/math], where for each [math]\displaystyle{ 1\le i\le n }[/math], [math]\displaystyle{ X_i }[/math] is independently distributed over the range [math]\displaystyle{ [0,1] }[/math]. Let [math]\displaystyle{ \mu=\mathbf{E}[X] }[/math]. Then
1. for [math]\displaystyle{ 0\lt \delta\le 1 }[/math],
[math]\displaystyle{ \Pr[X\ge (1+\delta)\mu]\lt \exp\left(-\frac{\mu\delta^2}{3}\right); }[/math]
[math]\displaystyle{ \Pr[X\le (1-\delta)\mu]\lt \exp\left(-\frac{\mu\delta^2}{2}\right); }[/math]
2. for [math]\displaystyle{ t\gt 0 }[/math],
[math]\displaystyle{ \Pr[X\ge\mu+t]\le \exp\left(-\frac{2t^2}{n}\right); }[/math]
[math]\displaystyle{ \Pr[X\le\mu-t]\le \exp\left(-\frac{2t^2}{n}\right); }[/math]
3. for [math]\displaystyle{ t\ge 2e\mu }[/math],
[math]\displaystyle{ \Pr[X\ge t]\le 2^{-t}. }[/math]

Permutation Routing