数据科学基础 (Fall 2024)/Problem Set 6: Difference between revisions
Jump to navigation
Jump to search
Liumingmou (talk | contribs) No edit summary |
Liumingmou (talk | contribs) |
||
Line 19: | Line 19: | ||
== Problem 2 (LLN & CLT)== | == Problem 2 (LLN & CLT)== | ||
* ['''Proportional betting'''] In each of a sequence of independent bets, a gambler either wins 30%, or loses 25% of her current fortune, each with probability <math>1/2</math>. Denoting her fortune after <math>n</math> bets by <math>F_n</math>, show that <math>\mathbb E(F_n)\to\infty</math> as <math>n \to\infty</math>, while <math>F_n \to 0</math> almost surely. | * ['''Proportional betting'''] In each of a sequence of independent bets, a gambler either wins 30%, or loses 25% of her current fortune, each with probability <math>1/2</math>. Denoting her fortune after <math>n</math> bets by <math>F_n</math>, show that <math>\mathbb E(F_n)\to\infty</math> as <math>n \to\infty</math>, while <math>F_n \to 0</math> almost surely. | ||
* [''' | * ['''Transience'''] Let <math>X_1,X_2,\dots</math> be independent identically distributed random variables taking values in the integers <math>\mathbb Z</math> and having a finite mean. Show that the Markov chain <math>S = \{S_n\}</math> given by <math>S_n = \sum^n_{i=1} X_i</math> is transient, i.e. <math>\forall n\in\mathbb N,\Pr(\exists n'>n, S_{n'}=S_n)<1</math>, if <math>\mathbb E(X_1)\ne 0</math>. | ||
* ['''Controlling a Fair Voting'''] In a society of <math>n</math> isolated (independent) and neutral (uniform) peoples, how many peoples are there enough to manipulate the result of a majority vote with <math>1-\delta</math> certainty? You have to use the Berry–Esseen theorem to solve this problem. | |||
== Problem 3 (Concentration of measure)== | == Problem 3 (Concentration of measure)== | ||
== Problem 4 (Random processes)== | == Problem 4 (Random processes)== |
Revision as of 12:39, 30 November 2024
- 每道题目的解答都要有完整的解题过程,中英文不限。
- 我们推荐大家使用LaTeX, markdown等对作业进行排版。
- 没有条件的同学可以用纸笔完成作业之后拍照。
- under construction
Assumption throughout Problem Set 6
Without further notice, we are working on probability space [math]\displaystyle{ (\Omega,\mathcal{F},\Pr) }[/math].
Without further notice, we assume that the expectation of random variables are well-defined.
Problem 1 (Convergence) (Bonus)
- [Convergence in [math]\displaystyle{ r }[/math]-th mean] Suppose [math]\displaystyle{ X_n{\xrightarrow {r}} X }[/math], where [math]\displaystyle{ r\ge 1 }[/math]. Prove or disprove that [math]\displaystyle{ \mathbb E[X_n^r]\to\mathbb E[X^r] }[/math].
- [Dominated convergence] Suppose [math]\displaystyle{ |X_n|\le Z }[/math] for all [math]\displaystyle{ n\in\mathbb N }[/math], where [math]\displaystyle{ \mathbb E(Z)\lt \infty }[/math]. Prove that if [math]\displaystyle{ X_n \xrightarrow P X }[/math] then [math]\displaystyle{ X_n \xrightarrow 1 X }[/math].
- [Slutsky’s theorem] Let [math]\displaystyle{ (X_n)_{n \ge 1}, (Y_n)_{n \ge 1}, X, Y }[/math] be random variables and [math]\displaystyle{ c\in\mathbb{R} }[/math] be a real number.
- Suppose [math]\displaystyle{ X_n \overset{D}{\to} X }[/math] and [math]\displaystyle{ Y_n \overset{D}{\to} c }[/math]. Prove that [math]\displaystyle{ X_nY_n \overset{D}{\to} cX }[/math].
- Construct an example such that [math]\displaystyle{ X_n \overset{D}{\to} X }[/math] and [math]\displaystyle{ Y_n \overset{D}{\to} Y }[/math] but [math]\displaystyle{ X_nY_n }[/math] does not converge to [math]\displaystyle{ XY }[/math] in distribution.
Problem 2 (LLN & CLT)
- [Proportional betting] In each of a sequence of independent bets, a gambler either wins 30%, or loses 25% of her current fortune, each with probability [math]\displaystyle{ 1/2 }[/math]. Denoting her fortune after [math]\displaystyle{ n }[/math] bets by [math]\displaystyle{ F_n }[/math], show that [math]\displaystyle{ \mathbb E(F_n)\to\infty }[/math] as [math]\displaystyle{ n \to\infty }[/math], while [math]\displaystyle{ F_n \to 0 }[/math] almost surely.
- [Transience] Let [math]\displaystyle{ X_1,X_2,\dots }[/math] be independent identically distributed random variables taking values in the integers [math]\displaystyle{ \mathbb Z }[/math] and having a finite mean. Show that the Markov chain [math]\displaystyle{ S = \{S_n\} }[/math] given by [math]\displaystyle{ S_n = \sum^n_{i=1} X_i }[/math] is transient, i.e. [math]\displaystyle{ \forall n\in\mathbb N,\Pr(\exists n'\gt n, S_{n'}=S_n)\lt 1 }[/math], if [math]\displaystyle{ \mathbb E(X_1)\ne 0 }[/math].
- [Controlling a Fair Voting] In a society of [math]\displaystyle{ n }[/math] isolated (independent) and neutral (uniform) peoples, how many peoples are there enough to manipulate the result of a majority vote with [math]\displaystyle{ 1-\delta }[/math] certainty? You have to use the Berry–Esseen theorem to solve this problem.