数据科学基础 (Fall 2024)/Problem Set 6: Difference between revisions
Jump to navigation
Jump to search
Liumingmou (talk | contribs) |
Liumingmou (talk | contribs) |
||
Line 34: | Line 34: | ||
== Problem 4 (Random processes)== | == Problem 4 (Random processes)== | ||
* ['''Hypergeometry'''] Given a bag with <math>r</math> red balls and <math>g</math> green balls, suppose that we uniformly sample <math>n</math> balls from the bin without replacement. Set up an appropriate martingale and use it to show that the number of red balls in the sample is tightly concentrated around <math>nr/(r+ g)</math>. | |||
* ['''Pólya’s urn''']A bag contains red and blue balls, with initially <math>r</math> red and <math>b</math> blue where <math>rb >0 </math>. A ball is drawn from the bag, its color noted, and then it is returned to the bag together with a new ball of the same color. Let <math>R_n </math> be the number of red balls after <math>n </math> such operations. | |||
*# Show that <math>Y_n = R_n/(n + r + b) </math> is a martingale | |||
*# Let <math>T </math> be the number of balls drawn until the first blue ball appears, and suppose that <math>r = b= 1 </math>. Show that <math>\mathbb E[(T + 2)^{−1}] = 1/4 </math>. | |||
* ['''Family planning'''] Children are either female or male. Their sexes are independent random variables, being female with probability <math>q</math> or male with probability <math>p= 1− q</math>. A woman ceases childbearing at stage <math>T</math> , and we write <math>G_n</math> and <math>B_n</math> for the numbers of girls and boys born to her up to and including stage <math>n</math>. Assume that <math>T</math> is a finite stopping time for the sequence <math>\{(G_n,B_n) : n \le 1\}</math>. Show that, no matter the stopping rule that yields <math>T</math> , we have <math>\mathbb E(G_T )/\mathbb E(B_T )= q/p</math>. What can be said about <math>\mathbb E(G_T /B_T )</math>? | |||
* ['''Random walk on a graph'''] A particle performs a random walk on the vertex set of a connected graph <math>G</math>, which for simplicity we assume to have neither loops nor multiple edges. At each stage it moves to a neighbor of its current position, each such neighbor being chosen with equal probability. If <math>G</math> has <math>\eta<\infty</math> edges, show that the stationary distribution is given by <math>\pi(v) = d_v/(2\eta)</math>, where <math>d_v</math> is the degree of vertex <math>v</math>. | |||
* ['''Reversibility versus periodicity'''] Can a reversible chain be periodic? |
Revision as of 14:13, 30 November 2024
- 每道题目的解答都要有完整的解题过程,中英文不限。
- 我们推荐大家使用LaTeX, markdown等对作业进行排版。
- 没有条件的同学可以用纸笔完成作业之后拍照。
- under construction
Assumption throughout Problem Set 6
Without further notice, we are working on probability space [math]\displaystyle{ (\Omega,\mathcal{F},\Pr) }[/math].
Without further notice, we assume that the expectation of random variables are well-defined.
Problem 1 (Convergence) (Bonus)
- [Convergence in [math]\displaystyle{ r }[/math]-th mean] Suppose [math]\displaystyle{ X_n{\xrightarrow {r}} X }[/math], where [math]\displaystyle{ r\ge 1 }[/math]. Prove or disprove that [math]\displaystyle{ \mathbb E[X_n^r]\to\mathbb E[X^r] }[/math].
- [Dominated convergence] Suppose [math]\displaystyle{ |X_n|\le Z }[/math] for all [math]\displaystyle{ n\in\mathbb N }[/math], where [math]\displaystyle{ \mathbb E(Z)\lt \infty }[/math]. Prove that if [math]\displaystyle{ X_n \xrightarrow P X }[/math] then [math]\displaystyle{ X_n \xrightarrow 1 X }[/math].
- [Slutsky’s theorem] Let [math]\displaystyle{ (X_n)_{n \ge 1}, (Y_n)_{n \ge 1}, X, Y }[/math] be random variables and [math]\displaystyle{ c\in\mathbb{R} }[/math] be a real number.
- Suppose [math]\displaystyle{ X_n \overset{D}{\to} X }[/math] and [math]\displaystyle{ Y_n \overset{D}{\to} c }[/math]. Prove that [math]\displaystyle{ X_nY_n \overset{D}{\to} cX }[/math].
- Construct an example such that [math]\displaystyle{ X_n \overset{D}{\to} X }[/math] and [math]\displaystyle{ Y_n \overset{D}{\to} Y }[/math] but [math]\displaystyle{ X_nY_n }[/math] does not converge to [math]\displaystyle{ XY }[/math] in distribution.
Problem 2 (LLN & CLT)
- [Proportional betting] In each of a sequence of independent bets, a gambler either wins 30%, or loses 25% of her current fortune, each with probability [math]\displaystyle{ 1/2 }[/math]. Denoting her fortune after [math]\displaystyle{ n }[/math] bets by [math]\displaystyle{ F_n }[/math], show that [math]\displaystyle{ \mathbb E(F_n)\to\infty }[/math] as [math]\displaystyle{ n \to\infty }[/math], while [math]\displaystyle{ F_n \to 0 }[/math] almost surely.
- [Transience] Let [math]\displaystyle{ X_1,X_2,\dots }[/math] be independent identically distributed random variables taking values in the integers [math]\displaystyle{ \mathbb Z }[/math] and having a finite mean. Show that the Markov chain [math]\displaystyle{ S = \{S_n\} }[/math] given by [math]\displaystyle{ S_n = \sum^n_{i=1} X_i }[/math] is transient, i.e. [math]\displaystyle{ \forall n\in\mathbb N,\Pr(\exists n'\gt n, S_{n'}=S_n)\lt 1 }[/math], if [math]\displaystyle{ \mathbb E(X_1)\ne 0 }[/math].
- [Controlling a Fair Voting] In a society of [math]\displaystyle{ n }[/math] isolated (independent) and neutral (uniform) peoples, how many peoples are there enough to manipulate the result of a majority vote with [math]\displaystyle{ 1-\delta }[/math] certainty? You have to use the Berry–Esseen theorem to solve this problem.
Problem 3 (Concentration of measure)
- [Tossing coins] We repeatedly toss a fair coin (with an equal probability of heads and tails). Let the random variable [math]\displaystyle{ X }[/math] be the number of throws required to obtain a total of [math]\displaystyle{ n }[/math] heads. Show that [math]\displaystyle{ \Pr[X \gt 2n + \delta\sqrt{n\log n}]\leq n^{-\delta^2/6} }[/math] for any real [math]\displaystyle{ 0\lt \delta\lt \sqrt{\frac{4n}{\log n}} }[/math].
- [[math]\displaystyle{ k }[/math]-th moment bound] Let [math]\displaystyle{ X }[/math] be a random variable with expectation [math]\displaystyle{ 0 }[/math] such that moment generating function [math]\displaystyle{ \mathbf{E}[\exp(t|X|)] }[/math] is finite for some [math]\displaystyle{ t \gt 0 }[/math]. We can use the following two kinds of tail inequalities for [math]\displaystyle{ X }[/math]:
- Chernoff Bound: [math]\displaystyle{ \Pr[|X| \geq \delta] \leq \min_{t \geq 0} {\mathbb{E}[e^{t|X|}]}/{e^{t\delta}} }[/math]
- [math]\displaystyle{ k }[/math]th-Moment Bound: [math]\displaystyle{ \Pr[|X| \geq \delta] \leq {\mathbb{E}[|X|^k]}/{\delta^k} }[/math]
- Show that for each [math]\displaystyle{ \delta }[/math], there exists a choice of [math]\displaystyle{ k }[/math] such that the [math]\displaystyle{ k }[/math]th-moment bound is no weaker than the Chernoff bound. (Hint: Use the probabilistic method.)
- Why would we still prefer the Chernoff bound to the (seemingly) stronger [math]\displaystyle{ k }[/math]-th moment bound?
- [Cut size in random graph] Show that with probability at least [math]\displaystyle{ 2/3 }[/math], the size of the max-cut in Erdős–Rényi random graph [math]\displaystyle{ G(n,1/2) }[/math] is at most [math]\displaystyle{ n^2/8 + O(n^{1.5}) }[/math]. In the [math]\displaystyle{ G(n,1/2) }[/math] model, each edge is included in the graph with probability [math]\displaystyle{ 1/2 }[/math], independently of every other edge.
Problem 4 (Random processes)
- [Hypergeometry] Given a bag with [math]\displaystyle{ r }[/math] red balls and [math]\displaystyle{ g }[/math] green balls, suppose that we uniformly sample [math]\displaystyle{ n }[/math] balls from the bin without replacement. Set up an appropriate martingale and use it to show that the number of red balls in the sample is tightly concentrated around [math]\displaystyle{ nr/(r+ g) }[/math].
- [Pólya’s urn]A bag contains red and blue balls, with initially [math]\displaystyle{ r }[/math] red and [math]\displaystyle{ b }[/math] blue where [math]\displaystyle{ rb \gt 0 }[/math]. A ball is drawn from the bag, its color noted, and then it is returned to the bag together with a new ball of the same color. Let [math]\displaystyle{ R_n }[/math] be the number of red balls after [math]\displaystyle{ n }[/math] such operations.
- Show that [math]\displaystyle{ Y_n = R_n/(n + r + b) }[/math] is a martingale
- Let [math]\displaystyle{ T }[/math] be the number of balls drawn until the first blue ball appears, and suppose that [math]\displaystyle{ r = b= 1 }[/math]. Show that [math]\displaystyle{ \mathbb E[(T + 2)^{−1}] = 1/4 }[/math].
- [Family planning] Children are either female or male. Their sexes are independent random variables, being female with probability [math]\displaystyle{ q }[/math] or male with probability [math]\displaystyle{ p= 1− q }[/math]. A woman ceases childbearing at stage [math]\displaystyle{ T }[/math] , and we write [math]\displaystyle{ G_n }[/math] and [math]\displaystyle{ B_n }[/math] for the numbers of girls and boys born to her up to and including stage [math]\displaystyle{ n }[/math]. Assume that [math]\displaystyle{ T }[/math] is a finite stopping time for the sequence [math]\displaystyle{ \{(G_n,B_n) : n \le 1\} }[/math]. Show that, no matter the stopping rule that yields [math]\displaystyle{ T }[/math] , we have [math]\displaystyle{ \mathbb E(G_T )/\mathbb E(B_T )= q/p }[/math]. What can be said about [math]\displaystyle{ \mathbb E(G_T /B_T ) }[/math]?
- [Random walk on a graph] A particle performs a random walk on the vertex set of a connected graph [math]\displaystyle{ G }[/math], which for simplicity we assume to have neither loops nor multiple edges. At each stage it moves to a neighbor of its current position, each such neighbor being chosen with equal probability. If [math]\displaystyle{ G }[/math] has [math]\displaystyle{ \eta\lt \infty }[/math] edges, show that the stationary distribution is given by [math]\displaystyle{ \pi(v) = d_v/(2\eta) }[/math], where [math]\displaystyle{ d_v }[/math] is the degree of vertex [math]\displaystyle{ v }[/math].
- [Reversibility versus periodicity] Can a reversible chain be periodic?