Randomized Algorithms (Spring 2010)/Martingales: Difference between revisions
Jump to navigation
Jump to search
imported>WikiSysop m Protected "Randomized Algorithms (Spring 2010)/Martingales" ([edit=sysop] (indefinite) [move=sysop] (indefinite)) |
imported>WikiSysop |
||
Line 64: | Line 64: | ||
|} | |} | ||
In other words, the function satisfies the Lipschitz condition if an arbitrary change in the value of any one argument does not change the value of the function by more than 1. | In other words, the function satisfies the Lipschitz condition if an arbitrary change in the value of any one argument does not change the value of the function by more than 1. | ||
{|border="1" | |||
|'''Definition (Lipschitz condition, general version):''' | |||
:A function <math>f(x_1,\ldots,x_n)</math> satisfies the Lipschitz condition with constants <math>c_i</math>, <math>1\le i\le n</math>, if for any <math>x_1,\ldots,x_n</math> and any <math>y_i</math>, | |||
::<math>\begin{align} | |||
|f(x_1,\ldots,x_{i-1},x_i,x_{i+1},\ldots,x_n)-f(x_1,\ldots,x_{i-1},y_i,x_{i+1},\ldots,x_n)|\le c_i. | |||
\end{align}</math> | |||
|} | |||
{|border="1" | {|border="1" | ||
|'''Corollary (Method of bounded differences):''' | |'''Corollary (Method of bounded differences):''' | ||
:Let <math>X=(X_0,X_1,\ldots, X_n)</math> be independent random variables and let <math>f</math> be a function satisfying the Lipschitz condition. | :Let <math>X=(X_0,X_1,\ldots, X_n)</math> be independent random variables and let <math>f</math> be a function satisfying the Lipschitz condition with constants <math>c_i</math>, 1\le i\le n. | ||
:Then | :Then | ||
::<math>\begin{align} | ::<math>\begin{align} | ||
\Pr\left[|f(X)-\mathbf{E}[f(X)]|\ge t\right]\le 2\exp\left(-\frac{t^2}{ | \Pr\left[|f(X)-\mathbf{E}[f(X)]|\ge t\right]\le 2\exp\left(-\frac{t^2}{2\sum_{i=1}^nc_i^2}\right). | ||
\end{align}</math> | \end{align}</math> | ||
|} | |} | ||
== Applications == | == Applications == |
Revision as of 13:43, 6 April 2010
Martingales
Review of conditional probability
Martingales and Azuma's Inequality
Azuma's Inequality:
Then
|
Corollary:
Then
|
Generalizations
Azuma's Inequality (general version):
Then
|
The Method of Bounded Differences
Theorem (The method of averaged bounded differences):
|
Definition (Lipschitz condition):
|
In other words, the function satisfies the Lipschitz condition if an arbitrary change in the value of any one argument does not change the value of the function by more than 1.
Definition (Lipschitz condition, general version):
|
Corollary (Method of bounded differences):
|