|
|
Line 19: |
Line 19: |
| |X_{k}-X_{k-1}|\le c_k, | | |X_{k}-X_{k-1}|\le c_k, |
| </math> | | </math> |
| Then | | :Then |
| ::<math>\begin{align} | | ::<math>\begin{align} |
| \Pr\left[|X_n-X_0|\ge t\right]\le 2\exp\left(-\frac{t^2}{2\sum_{k=1}^nc_k^2}\right). | | \Pr\left[|X_n-X_0|\ge t\right]\le 2\exp\left(-\frac{t^2}{2\sum_{k=1}^nc_k^2}\right). |
Revision as of 14:31, 6 April 2010
Martingales
Review of conditional probability
Martingales and Azuma's Inequality
Definition (martingale):
- A sequence of random variables [math]\displaystyle{ X_0,X_1,\ldots }[/math] is a martingale if for all [math]\displaystyle{ i\gt 0 }[/math],
- [math]\displaystyle{ \begin{align}
\mathbf{E}[X_{i}\mid X_0,\ldots,X_{i-1}]=X_{i-1}.
\end{align} }[/math]
|
Azuma's Inequality:
- Let [math]\displaystyle{ X_0,X_1,\ldots }[/math] be a martingale such that, for all [math]\displaystyle{ k\ge 1 }[/math],
- [math]\displaystyle{
|X_{k}-X_{k-1}|\le c_k,
}[/math]
- Then
- [math]\displaystyle{ \begin{align}
\Pr\left[|X_n-X_0|\ge t\right]\le 2\exp\left(-\frac{t^2}{2\sum_{k=1}^nc_k^2}\right).
\end{align} }[/math]
|
Corollary:
- Let [math]\displaystyle{ X_0,X_1,\ldots }[/math] be a martingale such that, for all [math]\displaystyle{ k\ge 1 }[/math],
- [math]\displaystyle{
|X_{k}-X_{k-1}|\le c,
}[/math]
- Then
- [math]\displaystyle{ \begin{align}
\Pr\left[|X_n-X_0|\ge ct\sqrt{n}\right]\le 2 e^{-t^2/2}.
\end{align} }[/math]
|
Generalizations
Definition (martingale, general version):
- A sequence of random variables [math]\displaystyle{ Y_0,Y_1,\ldots }[/math] is a martingale with respect to the sequence [math]\displaystyle{ X_0,X_1,\ldots }[/math] if, for all [math]\displaystyle{ i\ge 0 }[/math], the following conditions hold:
- [math]\displaystyle{ Y_i }[/math] is a function of [math]\displaystyle{ X_0,X_1,\ldots,X_i }[/math];
- [math]\displaystyle{ \begin{align}
\mathbf{E}[Y_{i+1}\mid X_0,\ldots,X_{i}]=Y_{i}.
\end{align} }[/math]
|
Therefore, a sequence [math]\displaystyle{ X_0,X_1,\ldots }[/math] is a martingale if it is a martingale with respect to itself.
Azuma's Inequality (general version):
- Let [math]\displaystyle{ Y_0,Y_1,\ldots }[/math] be a martingale with respect to the sequence [math]\displaystyle{ X_0,X_1,\ldots }[/math] such that, for all [math]\displaystyle{ k\ge 1 }[/math],
- [math]\displaystyle{
|Y_{k}-Y_{k-1}|\le c_k,
}[/math]
- Then
- [math]\displaystyle{ \begin{align}
\Pr\left[|Y_n-Y_0|\ge t\right]\le 2\exp\left(-\frac{t^2}{2\sum_{k=1}^nc_k^2}\right).
\end{align} }[/math]
|
The Method of Bounded Differences
For arbitrary random variables
Theorem (The method of averaged bounded differences):
- Let [math]\displaystyle{ X=(X_1,\ldots, X_n) }[/math] be arbitrary random variables and let [math]\displaystyle{ f }[/math] be a function of [math]\displaystyle{ X_0,X_1,\ldots, X_n }[/math] satisfying that, for all [math]\displaystyle{ 1\le i\le n }[/math],
- [math]\displaystyle{
|\mathbf{E}[f(X)\mid X_1,\ldots,X_i]-\mathbf{E}[f(X)\mid X_1,\ldots,X_{i-1}]|\le c_i,
}[/math]
- Then
- [math]\displaystyle{ \begin{align}
\Pr\left[|f(X)-\mathbf{E}[f(X)]|\ge t\right]\le 2\exp\left(-\frac{t^2}{2\sum_{i=1}^nc_i^2}\right).
\end{align} }[/math]
|
Define the Doob Martingale sequence [math]\displaystyle{ Y_0,Y_1,\ldots,Y_n }[/math] by setting [math]\displaystyle{ Y_0=\mathbf{E}[f(X_1,\ldots,X_n)] }[/math] and, for [math]\displaystyle{ 1\le i\le n }[/math], [math]\displaystyle{ Y_i=\mathbf{E}[f(X_1,\ldots,X_n)\mid X_1,\ldots,X_i] }[/math]. Then the above theorem is a restatement of the Azuma's inequality holding for [math]\displaystyle{ Y_0,Y_1,\ldots,Y_n }[/math].
For independent random variables
Definition (Lipschitz condition):
- A function [math]\displaystyle{ f(x_1,\ldots,x_n) }[/math] satisfies the Lipschitz condition, if for any [math]\displaystyle{ x_1,\ldots,x_n }[/math] and any [math]\displaystyle{ y_i }[/math],
- [math]\displaystyle{ \begin{align}
|f(x_1,\ldots,x_{i-1},x_i,x_{i+1},\ldots,x_n)-f(x_1,\ldots,x_{i-1},y_i,x_{i+1},\ldots,x_n)|\le 1.
\end{align} }[/math]
|
In other words, the function satisfies the Lipschitz condition if an arbitrary change in the value of any one argument does not change the value of the function by more than 1.
Definition (Lipschitz condition, general version):
- A function [math]\displaystyle{ f(x_1,\ldots,x_n) }[/math] satisfies the Lipschitz condition with constants [math]\displaystyle{ c_i }[/math], [math]\displaystyle{ 1\le i\le n }[/math], if for any [math]\displaystyle{ x_1,\ldots,x_n }[/math] and any [math]\displaystyle{ y_i }[/math],
- [math]\displaystyle{ \begin{align}
|f(x_1,\ldots,x_{i-1},x_i,x_{i+1},\ldots,x_n)-f(x_1,\ldots,x_{i-1},y_i,x_{i+1},\ldots,x_n)|\le c_i.
\end{align} }[/math]
|
Corollary (Method of bounded differences):
- Let [math]\displaystyle{ X=(X_1,\ldots, X_n) }[/math] be [math]\displaystyle{ n }[/math] independent random variables and let [math]\displaystyle{ f }[/math] be a function satisfying the Lipschitz condition with constants [math]\displaystyle{ c_i }[/math], [math]\displaystyle{ 1\le i\le n }[/math].
- Then
- [math]\displaystyle{ \begin{align}
\Pr\left[|f(X)-\mathbf{E}[f(X)]|\ge t\right]\le 2\exp\left(-\frac{t^2}{2\sum_{i=1}^nc_i^2}\right).
\end{align} }[/math]
|
Applications