Randomized Algorithms (Spring 2010)/Markov chains and random walks: Difference between revisions

From TCS Wiki
Jump to navigation Jump to search
imported>WikiSysop
imported>WikiSysop
Line 9: Line 9:
;discrete space
;discrete space
:The state space <math>\mathcal{S}</math> is countable. We are especially interested in the case that <math>\mathcal{S}</math> is finite, in which case the process is called a '''finite''' process.
:The state space <math>\mathcal{S}</math> is countable. We are especially interested in the case that <math>\mathcal{S}</math> is finite, in which case the process is called a '''finite''' process.
The next property is about the ''dependency structure'' among random variables. The simplest dependency structure for <math>X_0,X_1,\ldots</math> is no dependency at all, that is, independence. We consider the next simplest dependency structure called the '''Markov property'''.


{|border="1"
{|border="1"
Line 18: Line 20:
:for all <math>n</math> and all <math>x_0,\ldots,x_{n+1}\in \mathcal{S}</math>.
:for all <math>n</math> and all <math>x_0,\ldots,x_{n+1}\in \mathcal{S}</math>.
|}
|}
 
Informally, the Markov property means: "conditioning on the present, the future does not depend on the past." Hence, the Markov property is also called the ''memoryless'' property.
The Markov property is also known as the ''memoryless'' property. Informally, it means: "conditioning on the present, the future does not depend on the past."


A stochastic process <math>X_0,X_1,\ldots</math> of discrete time and discrete space is a '''Markov chain''' if it has the Markov property.
A stochastic process <math>X_0,X_1,\ldots</math> of discrete time and discrete space is a '''Markov chain''' if it has the Markov property.

Revision as of 02:34, 28 April 2010

Markov Chains

The Markov property and transition matrices

A stochastic processes [math]\displaystyle{ \{X_t\mid t\in T\} }[/math] is a collection of random variables. The index [math]\displaystyle{ t }[/math] is often called time, as the process represents the value of a random variable changing over time. Let [math]\displaystyle{ \mathcal{S} }[/math] be the set of values assumed by the random variables [math]\displaystyle{ X_t }[/math]. We call each element of [math]\displaystyle{ \mathcal{S} }[/math] a state, as [math]\displaystyle{ X_t }[/math] represents the state of the process at time [math]\displaystyle{ t }[/math].

The model of stochastic processes can be very general. In this class, we only consider the stochastic processes with the following properties:

discrete time
The index set [math]\displaystyle{ T }[/math] is countable. Specifically, we assume the process is [math]\displaystyle{ X_0,X_1,X_2,\ldots }[/math]
discrete space
The state space [math]\displaystyle{ \mathcal{S} }[/math] is countable. We are especially interested in the case that [math]\displaystyle{ \mathcal{S} }[/math] is finite, in which case the process is called a finite process.

The next property is about the dependency structure among random variables. The simplest dependency structure for [math]\displaystyle{ X_0,X_1,\ldots }[/math] is no dependency at all, that is, independence. We consider the next simplest dependency structure called the Markov property.

Definition (the Markov property)
A process [math]\displaystyle{ X_0,X_1,\ldots }[/math] satisfies the Markov property if
[math]\displaystyle{ \Pr[X_{n+1}=x_{n+1}\mid X_{0}=x_{0}, X_{1}=x_{1},\ldots,X_{n}=x_{n}]=\Pr[X_{n+1}=x_{n+1}\mid X_{n}=x_{n}] }[/math]
for all [math]\displaystyle{ n }[/math] and all [math]\displaystyle{ x_0,\ldots,x_{n+1}\in \mathcal{S} }[/math].

Informally, the Markov property means: "conditioning on the present, the future does not depend on the past." Hence, the Markov property is also called the memoryless property.

A stochastic process [math]\displaystyle{ X_0,X_1,\ldots }[/math] of discrete time and discrete space is a Markov chain if it has the Markov property.

Irreducibility and aperiodicity

Definition (irreducibility)
State [math]\displaystyle{ j }[/math] is accessible from state [math]\displaystyle{ i }[/math] if it is possible for the chain to visit state [math]\displaystyle{ j }[/math] if the chain starts in state [math]\displaystyle{ i }[/math], or, in other words,
[math]\displaystyle{ \begin{align}P^n(i,j)\gt 0\end{align} }[/math]
for some integer [math]\displaystyle{ n\ge 0 }[/math]. State [math]\displaystyle{ i }[/math] communicates with state [math]\displaystyle{ j }[/math] if [math]\displaystyle{ j }[/math] is accessible from [math]\displaystyle{ i }[/math] and [math]\displaystyle{ i }[/math] is accessible from [math]\displaystyle{ j }[/math].
We say that the Markov chain is irreducible if all pairs of states communicate.


Definition (aperiodicity)
The period of a state [math]\displaystyle{ i }[/math] is the greatest common divisor (gcd)
[math]\displaystyle{ \begin{align}d_i=\gcd\{n\mid (P^n)_{i,i}\gt 0\}\end{align} }[/math].
A state is aperiodic if its period is 1. A Markov chain is aperiodic if all its states are aperiodic.

Stationary distributions

Definition (stationary distribution)
A stationary distribution of a Markov chain is a probability distribution [math]\displaystyle{ \pi }[/math] such that
[math]\displaystyle{ \begin{align}\pi P=\pi\end{align} }[/math].


Theorem (Basic limit theorem)
Let [math]\displaystyle{ X_0,X_1,\ldots, }[/math] be an irreducible, aperiodic Markov chain having a stationary distribution [math]\displaystyle{ \pi }[/math]. Let [math]\displaystyle{ X_0 }[/math] have the distribution [math]\displaystyle{ \pi_0 }[/math], an arbitrary initial distribution. Then
[math]\displaystyle{ \lim_{n\rightarrow\infty}\pi_n(i)=\pi(i) }[/math]
for all states [math]\displaystyle{ i }[/math].

Recurrence and Ergodicity*

Definition (recurrence)
A state [math]\displaystyle{ i }[/math] is recurrent if [math]\displaystyle{ \Pr[T_i\lt \infty\mid X_0=i]=1 }[/math]. If [math]\displaystyle{ i }[/math] is not recurrent, it is called transient.
A recurrent state [math]\displaystyle{ i }[/math] is null recurrent if [math]\displaystyle{ h_{i,i}=\infty }[/math]. Otherwise, it is positive recurrent.


Definition (ergodicity)
An aperiodic, positive recurrent state is an ergodic state. A Markov chain is ergodic if all its states are ergodic.

Reversibility

Random Walks on Graphs

Hitting and covering

Mixing