Randomized Algorithms (Spring 2010)/Markov chains and random walks: Difference between revisions

From TCS Wiki
Jump to navigation Jump to search
imported>WikiSysop
imported>WikiSysop
Line 61: Line 61:
\Pr[X_{n+1}=j\mid X_0=i_0,\ldots,X_{n-1}=i_{n-1},X_n=i]=Pr[X_{n+1}=j\mid X_n=i]=P_{i,j}.
\Pr[X_{n+1}=j\mid X_0=i_0,\ldots,X_{n-1}=i_{n-1},X_n=i]=Pr[X_{n+1}=j\mid X_n=i]=P_{i,j}.
</math>
</math>
satisfies the '''Markov property''' if
::<math>
\Pr[X_{n+1}=x_{n+1}\mid X_{0}=x_{0}, X_{1}=x_{1},\ldots,X_{n}=x_{n}]=\Pr[X_{n+1}=x_{n+1}\mid X_{n}=x_{n}]
</math>
:for all <math>n</math> and all <math>x_0,\ldots,x_{n+1}\in \mathcal{S}</math>.
|}
|}



Revision as of 05:00, 28 April 2010

Markov Chains

The Markov property and transition matrices

A stochastic processes [math]\displaystyle{ \{X_t\mid t\in T\} }[/math] is a collection of random variables. The index [math]\displaystyle{ t }[/math] is often called time, as the process represents the value of a random variable changing over time. Let [math]\displaystyle{ \mathcal{S} }[/math] be the set of values assumed by the random variables [math]\displaystyle{ X_t }[/math]. We call each element of [math]\displaystyle{ \mathcal{S} }[/math] a state, as [math]\displaystyle{ X_t }[/math] represents the state of the process at time [math]\displaystyle{ t }[/math].

The model of stochastic processes can be very general. In this class, we only consider the stochastic processes with the following properties:

discrete time
The index set [math]\displaystyle{ T }[/math] is countable. Specifically, we assume the process is [math]\displaystyle{ X_0,X_1,X_2,\ldots }[/math]
discrete space
The state space [math]\displaystyle{ \mathcal{S} }[/math] is countable. We are especially interested in the case that [math]\displaystyle{ \mathcal{S} }[/math] is finite, in which case the process is called a finite process.

The next property is about the dependency structure among random variables. The simplest dependency structure for [math]\displaystyle{ X_0,X_1,\ldots }[/math] is no dependency at all, that is, independence. We consider the next simplest dependency structure called the Markov property.

Definition (the Markov property)
A process [math]\displaystyle{ X_0,X_1,\ldots }[/math] satisfies the Markov property if
[math]\displaystyle{ \Pr[X_{n+1}=x_{n+1}\mid X_{0}=x_{0}, X_{1}=x_{1},\ldots,X_{n}=x_{n}]=\Pr[X_{n+1}=x_{n+1}\mid X_{n}=x_{n}] }[/math]
for all [math]\displaystyle{ n }[/math] and all [math]\displaystyle{ x_0,\ldots,x_{n+1}\in \mathcal{S} }[/math].

Informally, the Markov property means: "conditioning on the present, the future does not depend on the past." Hence, the Markov property is also called the memoryless property.

A stochastic process [math]\displaystyle{ X_0,X_1,\ldots }[/math] of discrete time and discrete space is a Markov chain if it has the Markov property.

Let [math]\displaystyle{ P^{(t)}_{i,j}=\Pr[X_{t+1}=j\mid X_t=i] }[/math]. For a Markov chain with a finite state space [math]\displaystyle{ \mathcal{S}=[N] }[/math]. This gives us a transition matrix [math]\displaystyle{ P^{(t)} }[/math] at time [math]\displaystyle{ t }[/math]. The transition matrix [math]\displaystyle{ P^{(t)} }[/math] is an [math]\displaystyle{ N\times N }[/math] matrix of nonnegative entries such that the sum over each row of [math]\displaystyle{ P^{(t)} }[/math] is 1, since

[math]\displaystyle{ \begin{align}\sum_{j}P^{(t)}_{i,j}=\sum_{j}\Pr[X_{t+1}=j\mid X_t=i]=1\end{align} }[/math].

In linear algebra, matrices of this type are called stochastic matrices.

Let [math]\displaystyle{ \pi_t }[/math] be the distribution of the chain at time [math]\displaystyle{ t }[/math], that is, [math]\displaystyle{ \begin{align}\pi_t(i)=\Pr[X_t=i]\end{align} }[/math]. [math]\displaystyle{ \pi_t }[/math] can be seen as a vector of [math]\displaystyle{ N }[/math] nonnegative entries such that [math]\displaystyle{ \begin{align}\sum_{i}\pi_t(i)=1\end{align} }[/math]. In linear algebra, vectors of this type are called stochastic vectors. Then, it holds that

[math]\displaystyle{ \begin{align}\pi_{t+1}=\pi_tP^{(t)}\end{align} }[/math].

To see this, we apply the law of total probability,

[math]\displaystyle{ \begin{align} \pi_{t+1}(j) &= \Pr[X_{t+1}=j]\\ &= \sum_{i}\Pr[X_{t+1}=j\mid X_t=i]\Pr[X_t=i]\\ &=\sum_{i}\pi_t(i)P^{(t)}_{i,j}\\ &=(\pi_tP^{(t)})(j). \end{align} }[/math]

Therefore, a finite Markov chain [math]\displaystyle{ X_0,X_1,\ldots }[/math] is specified by an initial distribution [math]\displaystyle{ \pi_0 }[/math] and a sequence of transition matrices [math]\displaystyle{ P^{(0)},P^{(1)},\ldots }[/math].

[math]\displaystyle{ \pi_0\stackrel{P^{(0)}}{\longrightarrow}\pi_1\stackrel{P^{(1)}}{\longrightarrow}\pi_2\stackrel{P^{(2)}}{\longrightarrow}\cdots\cdots\pi_t\stackrel{P^{(t)}}{\longrightarrow}\pi_{t+1}\cdots }[/math]
Homogeneity

A Markov chain is said to be homogenous if the transitions depend only on the current states but not on the time, that is

[math]\displaystyle{ P^{(n)}_{i,j}=P_{i,j} }[/math] for all [math]\displaystyle{ n\ge 0 }[/math].

The transitions of a homogenous Markov chain is given by a single matrix [math]\displaystyle{ P }[/math]. Suppose that [math]\displaystyle{ \pi_0 }[/math] is the initial distribution. At each time [math]\displaystyle{ t }[/math],

[math]\displaystyle{ \begin{align}\pi_{t+1}=\pi_tP\end{align} }[/math].

Expanding this recursion, we have

[math]\displaystyle{ \begin{align}\pi_n=\pi_0P^n\end{align} }[/math].

From now on, we restrict ourselves to the homogenous Markov chains, and the term "Markov chain" means "homogenous Markov chian" unless stated otherwise.

Definition (finite Markov chain)
Let [math]\displaystyle{ P }[/math] be an [math]\displaystyle{ N\times N }[/math] stochastic matrix.
A process [math]\displaystyle{ X_0,X_1,\ldots }[/math] with finite space [math]\displaystyle{ \mathcal{S}=[N] }[/math] is said to be a (homogenous) Markov chain with transition matrix [math]\displaystyle{ P }[/math], if for all [math]\displaystyle{ n\ge0 }[/math], all [math]\displaystyle{ i,j\in[N] }[/math] and all [math]\displaystyle{ i_0,\ldots,i_{n-1}\in[N] }[/math] we have
[math]\displaystyle{ \Pr[X_{n+1}=j\mid X_0=i_0,\ldots,X_{n-1}=i_{n-1},X_n=i]=Pr[X_{n+1}=j\mid X_n=i]=P_{i,j}. }[/math]

Irreducibility and aperiodicity

Definition (irreducibility)
State [math]\displaystyle{ j }[/math] is accessible from state [math]\displaystyle{ i }[/math] if it is possible for the chain to visit state [math]\displaystyle{ j }[/math] if the chain starts in state [math]\displaystyle{ i }[/math], or, in other words,
[math]\displaystyle{ \begin{align}P^n(i,j)\gt 0\end{align} }[/math]
for some integer [math]\displaystyle{ n\ge 0 }[/math]. State [math]\displaystyle{ i }[/math] communicates with state [math]\displaystyle{ j }[/math] if [math]\displaystyle{ j }[/math] is accessible from [math]\displaystyle{ i }[/math] and [math]\displaystyle{ i }[/math] is accessible from [math]\displaystyle{ j }[/math].
We say that the Markov chain is irreducible if all pairs of states communicate.


Definition (aperiodicity)
The period of a state [math]\displaystyle{ i }[/math] is the greatest common divisor (gcd)
[math]\displaystyle{ \begin{align}d_i=\gcd\{n\mid (P^n)_{i,i}\gt 0\}\end{align} }[/math].
A state is aperiodic if its period is 1. A Markov chain is aperiodic if all its states are aperiodic.

Stationary distributions

Definition (stationary distribution)
A stationary distribution of a Markov chain is a probability distribution [math]\displaystyle{ \pi }[/math] such that
[math]\displaystyle{ \begin{align}\pi P=\pi\end{align} }[/math].


Theorem (Basic limit theorem)
Let [math]\displaystyle{ X_0,X_1,\ldots, }[/math] be an irreducible, aperiodic Markov chain having a stationary distribution [math]\displaystyle{ \pi }[/math]. Let [math]\displaystyle{ X_0 }[/math] have the distribution [math]\displaystyle{ \pi_0 }[/math], an arbitrary initial distribution. Then
[math]\displaystyle{ \lim_{n\rightarrow\infty}\pi_n(i)=\pi(i) }[/math]
for all states [math]\displaystyle{ i }[/math].

Recurrence and Ergodicity*

Definition (recurrence)
A state [math]\displaystyle{ i }[/math] is recurrent if [math]\displaystyle{ \Pr[T_i\lt \infty\mid X_0=i]=1 }[/math]. If [math]\displaystyle{ i }[/math] is not recurrent, it is called transient.
A recurrent state [math]\displaystyle{ i }[/math] is null recurrent if [math]\displaystyle{ h_{i,i}=\infty }[/math]. Otherwise, it is positive recurrent.


Definition (ergodicity)
An aperiodic, positive recurrent state is an ergodic state. A Markov chain is ergodic if all its states are ergodic.

Reversibility

Random Walks on Graphs

Hitting and covering

Mixing