Randomized Algorithms (Spring 2010)/Fingerprinting: Difference between revisions
Jump to navigation
Jump to search
imported>WikiSysop |
imported>WikiSysop |
||
Line 23: | Line 23: | ||
==== Example: Checking polynomial identities ==== | ==== Example: Checking polynomial identities ==== | ||
Consider the following problem: | |||
* Given as the input two multivariate polynomials <math>P_1(x_1,\ldots,x_n)</math> and <math>P_2(x_1,\ldots,x_n)</math>, | |||
* check whether <math>P_1\equiv P_2</math>. | |||
{|border="1" | {|border="1" | ||
|'''Algorithm (Schwartz-Zippel)''' | |'''Algorithm (Schwartz-Zippel)''' |
Revision as of 14:12, 2 June 2010
Fingerprinting
Evaluating at random points
Example: Checking matrix multiplication
Consider the following problem:
- Given as the input three [math]\displaystyle{ n\times n }[/math] matrices [math]\displaystyle{ A,B }[/math] and [math]\displaystyle{ C }[/math],
- check whether [math]\displaystyle{ C=AB }[/math].
Algorithm (Freivalds)
|
If [math]\displaystyle{ AB=C }[/math] then [math]\displaystyle{ A(Br) = Cr }[/math] for any [math]\displaystyle{ r \in\{0, 1\}^n }[/math], thus the algorithm always returns "yes".
Lemma
|
Example: Checking polynomial identities
Consider the following problem:
- Given as the input two multivariate polynomials [math]\displaystyle{ P_1(x_1,\ldots,x_n) }[/math] and [math]\displaystyle{ P_2(x_1,\ldots,x_n) }[/math],
- check whether [math]\displaystyle{ P_1\equiv P_2 }[/math].
Algorithm (Schwartz-Zippel)
|
Theorem (Schwartz-Zippel)
|
Evaluating over a random field
Example: Identity checking
Example: Randomized pattern matching
Universal hashing
- Example: checking distinctness