Randomized Algorithms (Spring 2010)/Fingerprinting: Difference between revisions
Line 47: | Line 47: | ||
For the Schwartz-Zippel algorithm, the items to compare are two polynomials <math>P_1(x_1,\ldots,x_n)</math> and <math>P_2(x_1,\ldots,x_n)</math>, and given a polynomial <math>Q(x_1,\ldots,x_n)</math>, its random fingerprint is computed as <math>\mathrm{FING}(Q)=Q(r_1,\ldots,r_n)</math> for <math>r_i</math> chosen independently and uniformly at random from some fixed set <math>S</math>. | For the Schwartz-Zippel algorithm, the items to compare are two polynomials <math>P_1(x_1,\ldots,x_n)</math> and <math>P_2(x_1,\ldots,x_n)</math>, and given a polynomial <math>Q(x_1,\ldots,x_n)</math>, its random fingerprint is computed as <math>\mathrm{FING}(Q)=Q(r_1,\ldots,r_n)</math> for <math>r_i</math> chosen independently and uniformly at random from some fixed set <math>S</math>. | ||
==== | ==== Communication complexity ==== | ||
==== Example: Randomized pattern matching ==== | ==== Example: Randomized pattern matching ==== |
Revision as of 11:45, 4 June 2010
Fingerprinting
Checking identities
Example: Checking matrix multiplication
Consider the following problem:
- Given as the input three [math]\displaystyle{ n\times n }[/math] matrices [math]\displaystyle{ A,B }[/math] and [math]\displaystyle{ C }[/math],
- check whether [math]\displaystyle{ C=AB }[/math].
Algorithm (Freivalds)
|
If [math]\displaystyle{ AB=C }[/math] then [math]\displaystyle{ A(Br) = Cr }[/math] for any [math]\displaystyle{ r \in\{0, 1\}^n }[/math], thus the algorithm always returns "yes".
Lemma
|
Example: Checking polynomial identities
Consider the following problem:
- Given as the input two multivariate polynomials [math]\displaystyle{ P_1(x_1,\ldots,x_n) }[/math] and [math]\displaystyle{ P_2(x_1,\ldots,x_n) }[/math],
- check whether [math]\displaystyle{ P_1\equiv P_2 }[/math].
Algorithm (Schwartz-Zippel)
|
Theorem (Schwartz-Zippel)
|
Fingerprinting
Suppose we want to compare two items [math]\displaystyle{ Z_1 }[/math] and [math]\displaystyle{ Z_2 }[/math]. Instead of comparing them directly, we compute random fingerprints [math]\displaystyle{ \mathrm{FING}(Z_1) }[/math] and [math]\displaystyle{ \mathrm{FING}(Z_2) }[/math] and compare these. The fingerprints has the following properties:
- If [math]\displaystyle{ Z_1\neq Z_2 }[/math] then [math]\displaystyle{ \Pr[\mathrm{FING}(Z_1)=\mathrm{FING}(Z_2)] }[/math] is small.
- It is much more to compute and compare the fingerprints than to compare [math]\displaystyle{ Z_1 }[/math] and [math]\displaystyle{ Z_2 }[/math] directly.
For Freivald's algorithm, the items to compare are two [math]\displaystyle{ n\times n }[/math] matrices [math]\displaystyle{ AB }[/math] and [math]\displaystyle{ C }[/math], and given an [math]\displaystyle{ n\times n }[/math] matrix [math]\displaystyle{ M }[/math], its random fingerprint is computed as [math]\displaystyle{ \mathrm{FING}(M)=Mr }[/math] for a uniformly random [math]\displaystyle{ r\in\{0,1\}^n }[/math].
For the Schwartz-Zippel algorithm, the items to compare are two polynomials [math]\displaystyle{ P_1(x_1,\ldots,x_n) }[/math] and [math]\displaystyle{ P_2(x_1,\ldots,x_n) }[/math], and given a polynomial [math]\displaystyle{ Q(x_1,\ldots,x_n) }[/math], its random fingerprint is computed as [math]\displaystyle{ \mathrm{FING}(Q)=Q(r_1,\ldots,r_n) }[/math] for [math]\displaystyle{ r_i }[/math] chosen independently and uniformly at random from some fixed set [math]\displaystyle{ S }[/math].
Communication complexity
Example: Randomized pattern matching
Universal hashing
- Example: checking distinctness