Combinatorics (Fall 2010)/Basic enumeration: Difference between revisions

From TCS Wiki
Jump to navigation Jump to search
imported>WikiSysop
Line 6: Line 6:


== The twelvfold way ==
== The twelvfold way ==
<math>f:N\rightarrow M</math>


{|border="2"  cellspacing="4" cellpadding="10" rules="all"  style="margin:1em 1em 1em 0; border:solid 1px #AAAAAA; border-collapse:collapse;empty-cells:show;"
{|border="2"  cellspacing="4" cellpadding="10" rules="all"  style="margin:1em 1em 1em 0; border:solid 1px #AAAAAA; border-collapse:collapse;empty-cells:show;"

Revision as of 01:06, 9 July 2010

Counting Problems

Sets and Multisets

Permutations

The twelvfold way

[math]\displaystyle{ f:N\rightarrow M }[/math]

Elements of [math]\displaystyle{ N }[/math] Elements of [math]\displaystyle{ M }[/math] Any [math]\displaystyle{ f }[/math] Injective (1-1) [math]\displaystyle{ f }[/math] Surjective (on-to) [math]\displaystyle{ f }[/math]
distinguishable distinguishable [math]\displaystyle{ m^n\, }[/math] [math]\displaystyle{ \left(m\right)_n }[/math] [math]\displaystyle{ m!S(n, m)\, }[/math]
indistinguishable distinguishable [math]\displaystyle{ \left({m\choose n}\right) }[/math] [math]\displaystyle{ {m\choose n} }[/math] [math]\displaystyle{ \left({m\choose n-m}\right) }[/math]
distinguishable indistinguishable [math]\displaystyle{ \sum_{k=1}^m S(n,k) }[/math] [math]\displaystyle{ \begin{cases}1 & \mbox{if }n\le m\\ 0& \mbox{if }n\gt m\end{cases} }[/math] [math]\displaystyle{ S(n,m)\, }[/math]
indistinguishable indistinguishable [math]\displaystyle{ \sum_{k=1}^m p_k(n) }[/math] [math]\displaystyle{ \begin{cases}1 & \mbox{if }n\le m\\ 0& \mbox{if }n\gt m\end{cases} }[/math] [math]\displaystyle{ p_m(n)\, }[/math]