Combinatorics (Fall 2010)/Random graphs: Difference between revisions

From TCS Wiki
Jump to navigation Jump to search
imported>WikiSysop
imported>WikiSysop
Line 20: Line 20:


==== Expander graphs ====
==== Expander graphs ====
We will show the existence of expander graphs by the probabilistic method. In order to do so, we need to generate random <math>d</math>-regular graphs.
Suppose that <math>d</math> is even. We can generate a random <math>d</math>-regular graph <math>G(V,E)</math> as follows:
* Let <math>V</math> be the vertex set. Uniformly and independently choose <math>\frac{d}{2}</math> cycles of <math>V</math>.
* For each vertex <math>v</math>, for every cycle, assuming that the two neighbors of <math>v</math> in that cycle is <math>w</math> and <math>u</math>, add two edges <math>wv</math> and <math>uv</math> to <math>E</math>.
The resulting <math>G(V,E)</math> is a multigraph. That is, it may have multiple edges between two vertices. We will show that <math>G(V,E)</math> is an expander graph with high probability. Formally, for some constant <math>d</math> and constant <math>\alpha</math>,
:<math>\Pr[\phi(G)\ge \alpha]=1-o(1)</math>.
By the probabilistic method, this shows that there exist expander graphs. In fact, the above probability bound shows something much stronger: it shows that almost every regular graph is an expander.
Recall that <math>\phi(G)=\min_{S:|S|\le\frac{n}{2}}\frac{|\partial S|}{|S|}</math>. We call such <math>S\subset V</math> that <math>\frac{|\partial S|}{|S|}<\alpha</math> a "bad <math>S</math>". Then <math>\phi(G)< \alpha</math> if and only if there exists a bad <math>S</math> of size at most <math>\frac{n}{2}</math>. Therefore,
:<math>
\begin{align}
\Pr[\phi(G)< \alpha]
&=
\Pr\left[\min_{S:|S|\le\frac{n}{2}}\frac{|\partial S|}{|S|}<\alpha\right]\\
&=
\sum_{k=1}^\frac{n}{2}\Pr[\,\exists \mbox{bad }S\mbox{ of size }k\,]\\
&\le
\sum_{k=1}^\frac{n}{2}\sum_{S\in{V\choose k}}\Pr[\,S\mbox{ is bad}\,]
\end{align}
</math>
Let <math>R\subset S</math> be the set of vertices in <math>S</math> which has neighbors in <math>\bar{S}</math>, and let <math>r=|R|</math>. It is obvious that <math>|\partial S|\ge r</math>, thus, for a bad <math>S</math>, <math>r<\alpha k</math>. Therefore, there are at most <math>\sum_{r=1}^{\alpha k}{k \choose r}</math> possible choices such <math>R</math>. For any fixed choice of <math>R</math>, the probability that an edge picked by a vertex in <math>S-R</math> connects to a vertex in <math>S</math> is at most <math>k/n</math>, and there are <math>d(k-r)</math> such edges. For any fixed <math>S</math> of size <math>k</math> and <math>R</math> of size <math>r</math>, the probability that all neighbors of all vertices in <math>S-R</math> are in <math>S</math> is at most <math>\left(\frac{k}{n}\right)^{d(k-r)}</math>. Due to the union bound, for any fixed <math>S</math> of size <math>k</math>,
:<math>
\begin{align}
\Pr[\,S\mbox{ is bad}\,]
&\le
\sum_{r=1}^{\alpha k}{k \choose r}\left(\frac{k}{n}\right)^{d(k-r)}
\le
\alpha k {k \choose \alpha k}\left(\frac{k}{n}\right)^{dk(1-\alpha)}
\end{align}
</math>
Therefore,
:<math>
\begin{align}
\Pr[\phi(G)< \alpha]
&\le
\sum_{k=1}^\frac{n}{2}\sum_{S\in{V\choose k}}\Pr[\,S\mbox{ is bad}\,]\\
&\le
\sum_{k=1}^\frac{n}{2}{n\choose k}\alpha k {k \choose \alpha k}\left(\frac{k}{n}\right)^{dk(1-\alpha)} \\
&\le
\sum_{k=1}^\frac{n}{2}\left(\frac{en}{k}\right)^k\alpha k \left(\frac{ek}{\alpha k}\right)^{\alpha k}\left(\frac{k}{n}\right)^{dk(1-\alpha)}&\quad (\mbox{Stirling formula }{n\choose k}\le\left(\frac{en}{k}\right)^k)\\
&\le
\sum_{k=1}^\frac{n}{2}\exp(O(k))\left(\frac{k}{n}\right)^{k(d(1-\alpha)-1)}.
\end{align}
</math>
The last line is <math>o(1)</math> when <math>d\ge\frac{2}{1-\alpha}</math>. Therefore, <math>G</math> is an expander graph with expansion ratio <math>\alpha</math> with high probability for suitable choices of constant <math>d</math> and constant <math>\alpha</math>.


===Monotone properties ===
===Monotone properties ===

Revision as of 07:48, 5 October 2010

Erdős–Rényi Random Graphs

The probabilistic method

Coloring large-girth graphs

Definition

Let [math]\displaystyle{ G(V,E) }[/math] be an undirected graph.

  • A cycle of length [math]\displaystyle{ k }[/math] in [math]\displaystyle{ G }[/math] is a sequence of distinct vertices [math]\displaystyle{ v_1,v_2,\ldots,v_{k} }[/math] such that [math]\displaystyle{ v_iv_{i+1}\in E }[/math] for all [math]\displaystyle{ i=1,2,\ldots,k-1 }[/math] and [math]\displaystyle{ v_kv_1\in E }[/math].
  • The girth of [math]\displaystyle{ G }[/math], dented [math]\displaystyle{ g(G) }[/math], is the length of the shortest cycle in [math]\displaystyle{ G }[/math].
  • The chromatic number of [math]\displaystyle{ G }[/math], denoted [math]\displaystyle{ \chi(G) }[/math], is the minimal number of colors which we need to color the vertices of [math]\displaystyle{ G }[/math] so that no two adjacent vertices have the same color. Formally,
[math]\displaystyle{ \chi(G)=\min\{C\in\mathbb{N}\mid \exists f:V\rightarrow[C]\mbox{ such that }\forall uv\in E, f(u)\neq f(v)\} }[/math].
  • The independence number of [math]\displaystyle{ G }[/math], denoted [math]\displaystyle{ \alpha(G) }[/math], is the size of the largest independent set in [math]\displaystyle{ G }[/math]. Formally,
[math]\displaystyle{ \alpha(G)=\max\{|S|\mid S\subseteq V\mbox{ and }\forall u,v\in S, uv\not\in E\} }[/math].
Theorem (Erdős 1959)
For all [math]\displaystyle{ k,\ell }[/math] there exists a graph [math]\displaystyle{ G }[/math] with [math]\displaystyle{ g(G)\gt \ell }[/math] and [math]\displaystyle{ \chi(G)\gt k\, }[/math].

Expander graphs

We will show the existence of expander graphs by the probabilistic method. In order to do so, we need to generate random [math]\displaystyle{ d }[/math]-regular graphs.

Suppose that [math]\displaystyle{ d }[/math] is even. We can generate a random [math]\displaystyle{ d }[/math]-regular graph [math]\displaystyle{ G(V,E) }[/math] as follows:

  • Let [math]\displaystyle{ V }[/math] be the vertex set. Uniformly and independently choose [math]\displaystyle{ \frac{d}{2} }[/math] cycles of [math]\displaystyle{ V }[/math].
  • For each vertex [math]\displaystyle{ v }[/math], for every cycle, assuming that the two neighbors of [math]\displaystyle{ v }[/math] in that cycle is [math]\displaystyle{ w }[/math] and [math]\displaystyle{ u }[/math], add two edges [math]\displaystyle{ wv }[/math] and [math]\displaystyle{ uv }[/math] to [math]\displaystyle{ E }[/math].

The resulting [math]\displaystyle{ G(V,E) }[/math] is a multigraph. That is, it may have multiple edges between two vertices. We will show that [math]\displaystyle{ G(V,E) }[/math] is an expander graph with high probability. Formally, for some constant [math]\displaystyle{ d }[/math] and constant [math]\displaystyle{ \alpha }[/math],

[math]\displaystyle{ \Pr[\phi(G)\ge \alpha]=1-o(1) }[/math].

By the probabilistic method, this shows that there exist expander graphs. In fact, the above probability bound shows something much stronger: it shows that almost every regular graph is an expander.

Recall that [math]\displaystyle{ \phi(G)=\min_{S:|S|\le\frac{n}{2}}\frac{|\partial S|}{|S|} }[/math]. We call such [math]\displaystyle{ S\subset V }[/math] that [math]\displaystyle{ \frac{|\partial S|}{|S|}\lt \alpha }[/math] a "bad [math]\displaystyle{ S }[/math]". Then [math]\displaystyle{ \phi(G)\lt \alpha }[/math] if and only if there exists a bad [math]\displaystyle{ S }[/math] of size at most [math]\displaystyle{ \frac{n}{2} }[/math]. Therefore,

[math]\displaystyle{ \begin{align} \Pr[\phi(G)\lt \alpha] &= \Pr\left[\min_{S:|S|\le\frac{n}{2}}\frac{|\partial S|}{|S|}\lt \alpha\right]\\ &= \sum_{k=1}^\frac{n}{2}\Pr[\,\exists \mbox{bad }S\mbox{ of size }k\,]\\ &\le \sum_{k=1}^\frac{n}{2}\sum_{S\in{V\choose k}}\Pr[\,S\mbox{ is bad}\,] \end{align} }[/math]

Let [math]\displaystyle{ R\subset S }[/math] be the set of vertices in [math]\displaystyle{ S }[/math] which has neighbors in [math]\displaystyle{ \bar{S} }[/math], and let [math]\displaystyle{ r=|R| }[/math]. It is obvious that [math]\displaystyle{ |\partial S|\ge r }[/math], thus, for a bad [math]\displaystyle{ S }[/math], [math]\displaystyle{ r\lt \alpha k }[/math]. Therefore, there are at most [math]\displaystyle{ \sum_{r=1}^{\alpha k}{k \choose r} }[/math] possible choices such [math]\displaystyle{ R }[/math]. For any fixed choice of [math]\displaystyle{ R }[/math], the probability that an edge picked by a vertex in [math]\displaystyle{ S-R }[/math] connects to a vertex in [math]\displaystyle{ S }[/math] is at most [math]\displaystyle{ k/n }[/math], and there are [math]\displaystyle{ d(k-r) }[/math] such edges. For any fixed [math]\displaystyle{ S }[/math] of size [math]\displaystyle{ k }[/math] and [math]\displaystyle{ R }[/math] of size [math]\displaystyle{ r }[/math], the probability that all neighbors of all vertices in [math]\displaystyle{ S-R }[/math] are in [math]\displaystyle{ S }[/math] is at most [math]\displaystyle{ \left(\frac{k}{n}\right)^{d(k-r)} }[/math]. Due to the union bound, for any fixed [math]\displaystyle{ S }[/math] of size [math]\displaystyle{ k }[/math],

[math]\displaystyle{ \begin{align} \Pr[\,S\mbox{ is bad}\,] &\le \sum_{r=1}^{\alpha k}{k \choose r}\left(\frac{k}{n}\right)^{d(k-r)} \le \alpha k {k \choose \alpha k}\left(\frac{k}{n}\right)^{dk(1-\alpha)} \end{align} }[/math]

Therefore,

[math]\displaystyle{ \begin{align} \Pr[\phi(G)\lt \alpha] &\le \sum_{k=1}^\frac{n}{2}\sum_{S\in{V\choose k}}\Pr[\,S\mbox{ is bad}\,]\\ &\le \sum_{k=1}^\frac{n}{2}{n\choose k}\alpha k {k \choose \alpha k}\left(\frac{k}{n}\right)^{dk(1-\alpha)} \\ &\le \sum_{k=1}^\frac{n}{2}\left(\frac{en}{k}\right)^k\alpha k \left(\frac{ek}{\alpha k}\right)^{\alpha k}\left(\frac{k}{n}\right)^{dk(1-\alpha)}&\quad (\mbox{Stirling formula }{n\choose k}\le\left(\frac{en}{k}\right)^k)\\ &\le \sum_{k=1}^\frac{n}{2}\exp(O(k))\left(\frac{k}{n}\right)^{k(d(1-\alpha)-1)}. \end{align} }[/math]

The last line is [math]\displaystyle{ o(1) }[/math] when [math]\displaystyle{ d\ge\frac{2}{1-\alpha} }[/math]. Therefore, [math]\displaystyle{ G }[/math] is an expander graph with expansion ratio [math]\displaystyle{ \alpha }[/math] with high probability for suitable choices of constant [math]\displaystyle{ d }[/math] and constant [math]\displaystyle{ \alpha }[/math].

Monotone properties

Threshold phenomenon

Concentration

Small-World Networks