Combinatorics (Fall 2010)/Random graphs: Difference between revisions
imported>WikiSysop |
imported>WikiSysop |
||
Line 20: | Line 20: | ||
==== Expander graphs ==== | ==== Expander graphs ==== | ||
Consider an undirected (multi)graph <math>G(V,E)</math>, where the parallel edges between two vertices are allowed. | |||
Some notations: | |||
* For <math>S,T\subset V</math>, let <math>E(S,T)=\{uv\in E\mid u\in S,v\in T\}</math>. | |||
* The '''Edge Boundary''' of a set <math>S\subset V</math>, denoted <math>\partial S\,</math>, is <math>\partial S = E(S, \bar{S})</math>. | |||
{{Theorem | |||
|Definition (Graph expansion)| | |||
:The '''expansion ratio''' of an undirected graph <math>G</math> on <math>n</math> vertices, is defined as | |||
::<math> | |||
\phi(G)=\min_{\overset{S\subset V}{|S|\le\frac{n}{2}}} \frac{|\partial S|}{|S|}. | |||
</math> | |||
}} | |||
'''Expander graphs''' are '''<math>d</math>-regular''' (multi)graphs with <math>d=O(1)</math> and <math>\phi(G)=\Omega(1)</math>. | |||
This definition states the following properties of expander graphs: | |||
* Expander graphs are sparse graphs. This is because the number of edges is <math>dn/2=O(n)</math>. | |||
* Despite the sparsity, expander graphs have good connectivity. This is supported by the expansion ratio. | |||
* This one is implicit: expander graph is a ''family of graphs'' <math>\{G_n\}</math>, where <math>n</math> is the number of vertices. The asymptotic order <math>O(1)</math> and <math>\Omega(1)</math> in the definition is relative to the number of vertices <math>n</math>, which grows to infinity. | |||
The following fact is directly implied by the definition. | |||
:;An expander graph has diameter <math>O(\log n)</math>. | |||
The proof is left for an exercise. | |||
For a vertex set <math>S</math>, the size of the edge boundary <math>|\partial S|</math> can be seen as the "perimeter" of <math>S</math>, and <math>|S|</math> can be seen as the "volume" of <math>S</math>. The expansion property can be interpreted as a combinatorial version of [http://en.wikipedia.org/wiki/Isoperimetric_inequality isoperimetric inequality]. | |||
We will show the existence of expander graphs by the probabilistic method. In order to do so, we need to generate random <math>d</math>-regular graphs. | We will show the existence of expander graphs by the probabilistic method. In order to do so, we need to generate random <math>d</math>-regular graphs. | ||
Revision as of 07:48, 5 October 2010
Erdős–Rényi Random Graphs
The probabilistic method
Coloring large-girth graphs
Definition Let [math]\displaystyle{ G(V,E) }[/math] be an undirected graph.
- A cycle of length [math]\displaystyle{ k }[/math] in [math]\displaystyle{ G }[/math] is a sequence of distinct vertices [math]\displaystyle{ v_1,v_2,\ldots,v_{k} }[/math] such that [math]\displaystyle{ v_iv_{i+1}\in E }[/math] for all [math]\displaystyle{ i=1,2,\ldots,k-1 }[/math] and [math]\displaystyle{ v_kv_1\in E }[/math].
- The girth of [math]\displaystyle{ G }[/math], dented [math]\displaystyle{ g(G) }[/math], is the length of the shortest cycle in [math]\displaystyle{ G }[/math].
- The chromatic number of [math]\displaystyle{ G }[/math], denoted [math]\displaystyle{ \chi(G) }[/math], is the minimal number of colors which we need to color the vertices of [math]\displaystyle{ G }[/math] so that no two adjacent vertices have the same color. Formally,
- [math]\displaystyle{ \chi(G)=\min\{C\in\mathbb{N}\mid \exists f:V\rightarrow[C]\mbox{ such that }\forall uv\in E, f(u)\neq f(v)\} }[/math].
- The independence number of [math]\displaystyle{ G }[/math], denoted [math]\displaystyle{ \alpha(G) }[/math], is the size of the largest independent set in [math]\displaystyle{ G }[/math]. Formally,
- [math]\displaystyle{ \alpha(G)=\max\{|S|\mid S\subseteq V\mbox{ and }\forall u,v\in S, uv\not\in E\} }[/math].
Theorem (Erdős 1959) - For all [math]\displaystyle{ k,\ell }[/math] there exists a graph [math]\displaystyle{ G }[/math] with [math]\displaystyle{ g(G)\gt \ell }[/math] and [math]\displaystyle{ \chi(G)\gt k\, }[/math].
Expander graphs
Consider an undirected (multi)graph [math]\displaystyle{ G(V,E) }[/math], where the parallel edges between two vertices are allowed.
Some notations:
- For [math]\displaystyle{ S,T\subset V }[/math], let [math]\displaystyle{ E(S,T)=\{uv\in E\mid u\in S,v\in T\} }[/math].
- The Edge Boundary of a set [math]\displaystyle{ S\subset V }[/math], denoted [math]\displaystyle{ \partial S\, }[/math], is [math]\displaystyle{ \partial S = E(S, \bar{S}) }[/math].
Definition (Graph expansion) - The expansion ratio of an undirected graph [math]\displaystyle{ G }[/math] on [math]\displaystyle{ n }[/math] vertices, is defined as
- [math]\displaystyle{ \phi(G)=\min_{\overset{S\subset V}{|S|\le\frac{n}{2}}} \frac{|\partial S|}{|S|}. }[/math]
- The expansion ratio of an undirected graph [math]\displaystyle{ G }[/math] on [math]\displaystyle{ n }[/math] vertices, is defined as
Expander graphs are [math]\displaystyle{ d }[/math]-regular (multi)graphs with [math]\displaystyle{ d=O(1) }[/math] and [math]\displaystyle{ \phi(G)=\Omega(1) }[/math].
This definition states the following properties of expander graphs:
- Expander graphs are sparse graphs. This is because the number of edges is [math]\displaystyle{ dn/2=O(n) }[/math].
- Despite the sparsity, expander graphs have good connectivity. This is supported by the expansion ratio.
- This one is implicit: expander graph is a family of graphs [math]\displaystyle{ \{G_n\} }[/math], where [math]\displaystyle{ n }[/math] is the number of vertices. The asymptotic order [math]\displaystyle{ O(1) }[/math] and [math]\displaystyle{ \Omega(1) }[/math] in the definition is relative to the number of vertices [math]\displaystyle{ n }[/math], which grows to infinity.
The following fact is directly implied by the definition.
- An expander graph has diameter [math]\displaystyle{ O(\log n) }[/math].
The proof is left for an exercise.
For a vertex set [math]\displaystyle{ S }[/math], the size of the edge boundary [math]\displaystyle{ |\partial S| }[/math] can be seen as the "perimeter" of [math]\displaystyle{ S }[/math], and [math]\displaystyle{ |S| }[/math] can be seen as the "volume" of [math]\displaystyle{ S }[/math]. The expansion property can be interpreted as a combinatorial version of isoperimetric inequality.
We will show the existence of expander graphs by the probabilistic method. In order to do so, we need to generate random [math]\displaystyle{ d }[/math]-regular graphs.
Suppose that [math]\displaystyle{ d }[/math] is even. We can generate a random [math]\displaystyle{ d }[/math]-regular graph [math]\displaystyle{ G(V,E) }[/math] as follows:
- Let [math]\displaystyle{ V }[/math] be the vertex set. Uniformly and independently choose [math]\displaystyle{ \frac{d}{2} }[/math] cycles of [math]\displaystyle{ V }[/math].
- For each vertex [math]\displaystyle{ v }[/math], for every cycle, assuming that the two neighbors of [math]\displaystyle{ v }[/math] in that cycle is [math]\displaystyle{ w }[/math] and [math]\displaystyle{ u }[/math], add two edges [math]\displaystyle{ wv }[/math] and [math]\displaystyle{ uv }[/math] to [math]\displaystyle{ E }[/math].
The resulting [math]\displaystyle{ G(V,E) }[/math] is a multigraph. That is, it may have multiple edges between two vertices. We will show that [math]\displaystyle{ G(V,E) }[/math] is an expander graph with high probability. Formally, for some constant [math]\displaystyle{ d }[/math] and constant [math]\displaystyle{ \alpha }[/math],
- [math]\displaystyle{ \Pr[\phi(G)\ge \alpha]=1-o(1) }[/math].
By the probabilistic method, this shows that there exist expander graphs. In fact, the above probability bound shows something much stronger: it shows that almost every regular graph is an expander.
Recall that [math]\displaystyle{ \phi(G)=\min_{S:|S|\le\frac{n}{2}}\frac{|\partial S|}{|S|} }[/math]. We call such [math]\displaystyle{ S\subset V }[/math] that [math]\displaystyle{ \frac{|\partial S|}{|S|}\lt \alpha }[/math] a "bad [math]\displaystyle{ S }[/math]". Then [math]\displaystyle{ \phi(G)\lt \alpha }[/math] if and only if there exists a bad [math]\displaystyle{ S }[/math] of size at most [math]\displaystyle{ \frac{n}{2} }[/math]. Therefore,
- [math]\displaystyle{ \begin{align} \Pr[\phi(G)\lt \alpha] &= \Pr\left[\min_{S:|S|\le\frac{n}{2}}\frac{|\partial S|}{|S|}\lt \alpha\right]\\ &= \sum_{k=1}^\frac{n}{2}\Pr[\,\exists \mbox{bad }S\mbox{ of size }k\,]\\ &\le \sum_{k=1}^\frac{n}{2}\sum_{S\in{V\choose k}}\Pr[\,S\mbox{ is bad}\,] \end{align} }[/math]
Let [math]\displaystyle{ R\subset S }[/math] be the set of vertices in [math]\displaystyle{ S }[/math] which has neighbors in [math]\displaystyle{ \bar{S} }[/math], and let [math]\displaystyle{ r=|R| }[/math]. It is obvious that [math]\displaystyle{ |\partial S|\ge r }[/math], thus, for a bad [math]\displaystyle{ S }[/math], [math]\displaystyle{ r\lt \alpha k }[/math]. Therefore, there are at most [math]\displaystyle{ \sum_{r=1}^{\alpha k}{k \choose r} }[/math] possible choices such [math]\displaystyle{ R }[/math]. For any fixed choice of [math]\displaystyle{ R }[/math], the probability that an edge picked by a vertex in [math]\displaystyle{ S-R }[/math] connects to a vertex in [math]\displaystyle{ S }[/math] is at most [math]\displaystyle{ k/n }[/math], and there are [math]\displaystyle{ d(k-r) }[/math] such edges. For any fixed [math]\displaystyle{ S }[/math] of size [math]\displaystyle{ k }[/math] and [math]\displaystyle{ R }[/math] of size [math]\displaystyle{ r }[/math], the probability that all neighbors of all vertices in [math]\displaystyle{ S-R }[/math] are in [math]\displaystyle{ S }[/math] is at most [math]\displaystyle{ \left(\frac{k}{n}\right)^{d(k-r)} }[/math]. Due to the union bound, for any fixed [math]\displaystyle{ S }[/math] of size [math]\displaystyle{ k }[/math],
- [math]\displaystyle{ \begin{align} \Pr[\,S\mbox{ is bad}\,] &\le \sum_{r=1}^{\alpha k}{k \choose r}\left(\frac{k}{n}\right)^{d(k-r)} \le \alpha k {k \choose \alpha k}\left(\frac{k}{n}\right)^{dk(1-\alpha)} \end{align} }[/math]
Therefore,
- [math]\displaystyle{ \begin{align} \Pr[\phi(G)\lt \alpha] &\le \sum_{k=1}^\frac{n}{2}\sum_{S\in{V\choose k}}\Pr[\,S\mbox{ is bad}\,]\\ &\le \sum_{k=1}^\frac{n}{2}{n\choose k}\alpha k {k \choose \alpha k}\left(\frac{k}{n}\right)^{dk(1-\alpha)} \\ &\le \sum_{k=1}^\frac{n}{2}\left(\frac{en}{k}\right)^k\alpha k \left(\frac{ek}{\alpha k}\right)^{\alpha k}\left(\frac{k}{n}\right)^{dk(1-\alpha)}&\quad (\mbox{Stirling formula }{n\choose k}\le\left(\frac{en}{k}\right)^k)\\ &\le \sum_{k=1}^\frac{n}{2}\exp(O(k))\left(\frac{k}{n}\right)^{k(d(1-\alpha)-1)}. \end{align} }[/math]
The last line is [math]\displaystyle{ o(1) }[/math] when [math]\displaystyle{ d\ge\frac{2}{1-\alpha} }[/math]. Therefore, [math]\displaystyle{ G }[/math] is an expander graph with expansion ratio [math]\displaystyle{ \alpha }[/math] with high probability for suitable choices of constant [math]\displaystyle{ d }[/math] and constant [math]\displaystyle{ \alpha }[/math].