Combinatorics (Fall 2010)/Random graphs: Difference between revisions
imported>WikiSysop |
imported>WikiSysop |
||
Line 99: | Line 99: | ||
{{Theorem|Theorem| | {{Theorem|Theorem| | ||
:The threshold for a random graph <math>G(n,p)</math> to contain a 4-clique is <math>p=n^{2/3}</math>. | :The threshold for a random graph <math>G(n,p)</math> to contain a 4-clique is <math>p=n^{2/3}</math>. | ||
}} | |||
{{Theorem|Definition| | |||
* The '''density''' of a graph <math>G(V,E)</math>, denoted <math>dens(G)</math>, is defined as <math>dens(G)=\frac{|E|}{|V|}</math>. | |||
* The '''subgraph density''' <math>m(G)</math> of a graph is the maximum density <math>dens(H)</math> of its subgraph <math>H</math> of <math>G</math>. | |||
* A graph <math>G(V,E)</math> is '''balanced''' if <math>dense(H)\le dens(G)</math> for all subgraphs <math>H</math> of <math>G</math>. | |||
}} | }} | ||
Revision as of 09:13, 5 October 2010
Erdős–Rényi Random Graphs
The probabilistic method
Coloring large-girth graphs
Definition Let [math]\displaystyle{ G(V,E) }[/math] be an undirected graph.
- A cycle of length [math]\displaystyle{ k }[/math] in [math]\displaystyle{ G }[/math] is a sequence of distinct vertices [math]\displaystyle{ v_1,v_2,\ldots,v_{k} }[/math] such that [math]\displaystyle{ v_iv_{i+1}\in E }[/math] for all [math]\displaystyle{ i=1,2,\ldots,k-1 }[/math] and [math]\displaystyle{ v_kv_1\in E }[/math].
- The girth of [math]\displaystyle{ G }[/math], dented [math]\displaystyle{ g(G) }[/math], is the length of the shortest cycle in [math]\displaystyle{ G }[/math].
- The chromatic number of [math]\displaystyle{ G }[/math], denoted [math]\displaystyle{ \chi(G) }[/math], is the minimal number of colors which we need to color the vertices of [math]\displaystyle{ G }[/math] so that no two adjacent vertices have the same color. Formally,
- [math]\displaystyle{ \chi(G)=\min\{C\in\mathbb{N}\mid \exists f:V\rightarrow[C]\mbox{ such that }\forall uv\in E, f(u)\neq f(v)\} }[/math].
- The independence number of [math]\displaystyle{ G }[/math], denoted [math]\displaystyle{ \alpha(G) }[/math], is the size of the largest independent set in [math]\displaystyle{ G }[/math]. Formally,
- [math]\displaystyle{ \alpha(G)=\max\{|S|\mid S\subseteq V\mbox{ and }\forall u,v\in S, uv\not\in E\} }[/math].
Theorem (Erdős 1959) - For all [math]\displaystyle{ k,\ell }[/math] there exists a graph [math]\displaystyle{ G }[/math] with [math]\displaystyle{ g(G)\gt \ell }[/math] and [math]\displaystyle{ \chi(G)\gt k\, }[/math].
Expander graphs
Consider an undirected (multi)graph [math]\displaystyle{ G(V,E) }[/math], where the parallel edges between two vertices are allowed.
Some notations:
- For [math]\displaystyle{ S,T\subset V }[/math], let [math]\displaystyle{ E(S,T)=\{uv\in E\mid u\in S,v\in T\} }[/math].
- The Edge Boundary of a set [math]\displaystyle{ S\subset V }[/math], denoted [math]\displaystyle{ \partial S\, }[/math], is [math]\displaystyle{ \partial S = E(S, \bar{S}) }[/math].
Definition (Graph expansion) - The expansion ratio of an undirected graph [math]\displaystyle{ G }[/math] on [math]\displaystyle{ n }[/math] vertices, is defined as
- [math]\displaystyle{ \phi(G)=\min_{\overset{S\subset V}{|S|\le\frac{n}{2}}} \frac{|\partial S|}{|S|}. }[/math]
- The expansion ratio of an undirected graph [math]\displaystyle{ G }[/math] on [math]\displaystyle{ n }[/math] vertices, is defined as
Expander graphs are [math]\displaystyle{ d }[/math]-regular (multi)graphs with [math]\displaystyle{ d=O(1) }[/math] and [math]\displaystyle{ \phi(G)=\Omega(1) }[/math].
This definition states the following properties of expander graphs:
- Expander graphs are sparse graphs. This is because the number of edges is [math]\displaystyle{ dn/2=O(n) }[/math].
- Despite the sparsity, expander graphs have good connectivity. This is supported by the expansion ratio.
- This one is implicit: expander graph is a family of graphs [math]\displaystyle{ \{G_n\} }[/math], where [math]\displaystyle{ n }[/math] is the number of vertices. The asymptotic order [math]\displaystyle{ O(1) }[/math] and [math]\displaystyle{ \Omega(1) }[/math] in the definition is relative to the number of vertices [math]\displaystyle{ n }[/math], which grows to infinity.
For a vertex set [math]\displaystyle{ S }[/math], the size of the edge boundary [math]\displaystyle{ |\partial S| }[/math] can be seen as the "perimeter" of [math]\displaystyle{ S }[/math], and [math]\displaystyle{ |S| }[/math] can be seen as the "volume" of [math]\displaystyle{ S }[/math]. The expansion property can be interpreted as a combinatorial version of isoperimetric inequality.
We will show the existence of expander graphs by the probabilistic method. In order to do so, we need to generate random [math]\displaystyle{ d }[/math]-regular graphs.
Suppose that [math]\displaystyle{ d }[/math] is even. We can generate a random [math]\displaystyle{ d }[/math]-regular graph [math]\displaystyle{ G(V,E) }[/math] as follows:
- Let [math]\displaystyle{ V }[/math] be the vertex set. Uniformly and independently choose [math]\displaystyle{ \frac{d}{2} }[/math] cycles of [math]\displaystyle{ V }[/math].
- For each vertex [math]\displaystyle{ v }[/math], for every cycle, assuming that the two neighbors of [math]\displaystyle{ v }[/math] in that cycle is [math]\displaystyle{ w }[/math] and [math]\displaystyle{ u }[/math], add two edges [math]\displaystyle{ wv }[/math] and [math]\displaystyle{ uv }[/math] to [math]\displaystyle{ E }[/math].
The resulting [math]\displaystyle{ G(V,E) }[/math] is a multigraph. That is, it may have multiple edges between two vertices. We will show that [math]\displaystyle{ G(V,E) }[/math] is an expander graph with high probability. Formally, for some constant [math]\displaystyle{ d }[/math] and constant [math]\displaystyle{ \alpha }[/math],
- [math]\displaystyle{ \Pr[\phi(G)\ge \alpha]=1-o(1) }[/math].
By the probabilistic method, this shows that there exist expander graphs. In fact, the above probability bound shows something much stronger: it shows that almost every regular graph is an expander.
Recall that [math]\displaystyle{ \phi(G)=\min_{S:|S|\le\frac{n}{2}}\frac{|\partial S|}{|S|} }[/math]. We call such [math]\displaystyle{ S\subset V }[/math] that [math]\displaystyle{ \frac{|\partial S|}{|S|}\lt \alpha }[/math] a "bad [math]\displaystyle{ S }[/math]". Then [math]\displaystyle{ \phi(G)\lt \alpha }[/math] if and only if there exists a bad [math]\displaystyle{ S }[/math] of size at most [math]\displaystyle{ \frac{n}{2} }[/math]. Therefore,
- [math]\displaystyle{ \begin{align} \Pr[\phi(G)\lt \alpha] &= \Pr\left[\min_{S:|S|\le\frac{n}{2}}\frac{|\partial S|}{|S|}\lt \alpha\right]\\ &= \sum_{k=1}^\frac{n}{2}\Pr[\,\exists \mbox{bad }S\mbox{ of size }k\,]\\ &\le \sum_{k=1}^\frac{n}{2}\sum_{S\in{V\choose k}}\Pr[\,S\mbox{ is bad}\,] \end{align} }[/math]
Let [math]\displaystyle{ R\subset S }[/math] be the set of vertices in [math]\displaystyle{ S }[/math] which has neighbors in [math]\displaystyle{ \bar{S} }[/math], and let [math]\displaystyle{ r=|R| }[/math]. It is obvious that [math]\displaystyle{ |\partial S|\ge r }[/math], thus, for a bad [math]\displaystyle{ S }[/math], [math]\displaystyle{ r\lt \alpha k }[/math]. Therefore, there are at most [math]\displaystyle{ \sum_{r=1}^{\alpha k}{k \choose r} }[/math] possible choices such [math]\displaystyle{ R }[/math]. For any fixed choice of [math]\displaystyle{ R }[/math], the probability that an edge picked by a vertex in [math]\displaystyle{ S-R }[/math] connects to a vertex in [math]\displaystyle{ S }[/math] is at most [math]\displaystyle{ k/n }[/math], and there are [math]\displaystyle{ d(k-r) }[/math] such edges. For any fixed [math]\displaystyle{ S }[/math] of size [math]\displaystyle{ k }[/math] and [math]\displaystyle{ R }[/math] of size [math]\displaystyle{ r }[/math], the probability that all neighbors of all vertices in [math]\displaystyle{ S-R }[/math] are in [math]\displaystyle{ S }[/math] is at most [math]\displaystyle{ \left(\frac{k}{n}\right)^{d(k-r)} }[/math]. Due to the union bound, for any fixed [math]\displaystyle{ S }[/math] of size [math]\displaystyle{ k }[/math],
- [math]\displaystyle{ \begin{align} \Pr[\,S\mbox{ is bad}\,] &\le \sum_{r=1}^{\alpha k}{k \choose r}\left(\frac{k}{n}\right)^{d(k-r)} \le \alpha k {k \choose \alpha k}\left(\frac{k}{n}\right)^{dk(1-\alpha)} \end{align} }[/math]
Therefore,
- [math]\displaystyle{ \begin{align} \Pr[\phi(G)\lt \alpha] &\le \sum_{k=1}^\frac{n}{2}\sum_{S\in{V\choose k}}\Pr[\,S\mbox{ is bad}\,]\\ &\le \sum_{k=1}^\frac{n}{2}{n\choose k}\alpha k {k \choose \alpha k}\left(\frac{k}{n}\right)^{dk(1-\alpha)} \\ &\le \sum_{k=1}^\frac{n}{2}\left(\frac{en}{k}\right)^k\alpha k \left(\frac{ek}{\alpha k}\right)^{\alpha k}\left(\frac{k}{n}\right)^{dk(1-\alpha)}&\quad (\mbox{Stirling formula }{n\choose k}\le\left(\frac{en}{k}\right)^k)\\ &\le \sum_{k=1}^\frac{n}{2}\exp(O(k))\left(\frac{k}{n}\right)^{k(d(1-\alpha)-1)}. \end{align} }[/math]
The last line is [math]\displaystyle{ o(1) }[/math] when [math]\displaystyle{ d\ge\frac{2}{1-\alpha} }[/math]. Therefore, [math]\displaystyle{ G }[/math] is an expander graph with expansion ratio [math]\displaystyle{ \alpha }[/math] with high probability for suitable choices of constant [math]\displaystyle{ d }[/math] and constant [math]\displaystyle{ \alpha }[/math].
Monotone properties
Threshold phenomenon
Theorem - The threshold for a random graph [math]\displaystyle{ G(n,p) }[/math] to contain a 4-clique is [math]\displaystyle{ p=n^{2/3} }[/math].
Definition - The density of a graph [math]\displaystyle{ G(V,E) }[/math], denoted [math]\displaystyle{ dens(G) }[/math], is defined as [math]\displaystyle{ dens(G)=\frac{|E|}{|V|} }[/math].
- The subgraph density [math]\displaystyle{ m(G) }[/math] of a graph is the maximum density [math]\displaystyle{ dens(H) }[/math] of its subgraph [math]\displaystyle{ H }[/math] of [math]\displaystyle{ G }[/math].
- A graph [math]\displaystyle{ G(V,E) }[/math] is balanced if [math]\displaystyle{ dense(H)\le dens(G) }[/math] for all subgraphs [math]\displaystyle{ H }[/math] of [math]\displaystyle{ G }[/math].