Combinatorics (Fall 2010)/Random graphs: Difference between revisions
imported>WikiSysop m Protected "Combinatorics (Fall 2010)/Random graphs" ([edit=sysop] (indefinite) [move=sysop] (indefinite)) |
imported>WikiSysop |
||
Line 169: | Line 169: | ||
: For all <math>k,\ell</math> there exists a graph <math>G</math> with <math>g(G)>\ell</math> and <math>\chi(G)>k\,</math>. | : For all <math>k,\ell</math> there exists a graph <math>G</math> with <math>g(G)>\ell</math> and <math>\chi(G)>k\,</math>. | ||
}} | }} | ||
===Monotone properties === | ===Monotone properties === |
Revision as of 09:31, 7 October 2010
Tail Inequalities
Markov's inequality
One of the most natural information about a random variable is its expectation, which is the first moment of the random variable. Markov's inequality draws a tail bound for a random variable from its expectation.
Theorem (Markov's Inequality) - Let [math]\displaystyle{ X }[/math] be a random variable assuming only nonnegative values. Then, for all [math]\displaystyle{ t\gt 0 }[/math],
- [math]\displaystyle{ \begin{align} \Pr[X\ge t]\le \frac{\mathbf{E}[X]}{t}. \end{align} }[/math]
- Let [math]\displaystyle{ X }[/math] be a random variable assuming only nonnegative values. Then, for all [math]\displaystyle{ t\gt 0 }[/math],
Proof. Let [math]\displaystyle{ Y }[/math] be the indicator such that - [math]\displaystyle{ \begin{align} Y &= \begin{cases} 1 & \mbox{if }X\ge t,\\ 0 & \mbox{otherwise.} \end{cases} \end{align} }[/math]
It holds that [math]\displaystyle{ Y\le\frac{X}{t} }[/math]. Since [math]\displaystyle{ Y }[/math] is 0-1 valued, [math]\displaystyle{ \mathbf{E}[Y]=\Pr[Y=1]=\Pr[X\ge t] }[/math]. Therefore,
- [math]\displaystyle{ \Pr[X\ge t] = \mathbf{E}[Y] \le \mathbf{E}\left[\frac{X}{t}\right] =\frac{\mathbf{E}[X]}{t}. }[/math]
- [math]\displaystyle{ \square }[/math]
For any random variable [math]\displaystyle{ X }[/math], for an arbitrary non-negative real function [math]\displaystyle{ h }[/math], the [math]\displaystyle{ h(X) }[/math] is a non-negative random variable. Applying Markov's inequality, we directly have that
- [math]\displaystyle{ \Pr[h(X)\ge t]\le\frac{\mathbf{E}[h(X)]}{t}. }[/math]
This trivial application of Markov's inequality gives us a powerful tool for proving tail inequalities. With the function [math]\displaystyle{ h }[/math] which extracts more information about the random variable, we can prove sharper tail inequalities.
Variance
Definition (variance) - The variance of a random variable [math]\displaystyle{ X }[/math] is defined as
- [math]\displaystyle{ \begin{align} \mathbf{Var}[X]=\mathbf{E}\left[(X-\mathbf{E}[X])^2\right]=\mathbf{E}\left[X^2\right]-(\mathbf{E}[X])^2. \end{align} }[/math]
- The standard deviation of random variable [math]\displaystyle{ X }[/math] is
- [math]\displaystyle{ \delta[X]=\sqrt{\mathbf{Var}[X]}. }[/math]
- The variance of a random variable [math]\displaystyle{ X }[/math] is defined as
We have seen that due to the linearity of expectations, the expectation of the sum of variable is the sum of the expectations of the variables. It is natural to ask whether this is true for variances. We find that the variance of sum has an extra term called covariance.
Definition (covariance) - The covariance of two random variables [math]\displaystyle{ X }[/math] and [math]\displaystyle{ Y }[/math] is
- [math]\displaystyle{ \begin{align} \mathbf{Cov}(X,Y)=\mathbf{E}\left[(X-\mathbf{E}[X])(Y-\mathbf{E}[Y])\right]. \end{align} }[/math]
- The covariance of two random variables [math]\displaystyle{ X }[/math] and [math]\displaystyle{ Y }[/math] is
We have the following theorem for the variance of sum.
Theorem - For any two random variables [math]\displaystyle{ X }[/math] and [math]\displaystyle{ Y }[/math],
- [math]\displaystyle{ \begin{align} \mathbf{Var}[X+Y]=\mathbf{Var}[X]+\mathbf{Var}[Y]+2\mathbf{Cov}(X,Y). \end{align} }[/math]
- Generally, for any random variables [math]\displaystyle{ X_1,X_2,\ldots,X_n }[/math],
- [math]\displaystyle{ \begin{align} \mathbf{Var}\left[\sum_{i=1}^n X_i\right]=\sum_{i=1}^n\mathbf{Var}[X_i]+\sum_{i\neq j}\mathbf{Cov}(X_i,X_j). \end{align} }[/math]
- For any two random variables [math]\displaystyle{ X }[/math] and [math]\displaystyle{ Y }[/math],
Proof. The equation for two variables is directly due to the definition of variance and covariance. The equation for [math]\displaystyle{ n }[/math] variables can be deduced from the equation for two variables.
- [math]\displaystyle{ \square }[/math]
We will see that when random variables are independent, the variance of sum is equal to the sum of variances. To prove this, we first establish a very useful result regarding the expectation of multiplicity.
Theorem - For any two independent random variables [math]\displaystyle{ X }[/math] and [math]\displaystyle{ Y }[/math],
- [math]\displaystyle{ \begin{align} \mathbf{E}[X\cdot Y]=\mathbf{E}[X]\cdot\mathbf{E}[Y]. \end{align} }[/math]
- For any two independent random variables [math]\displaystyle{ X }[/math] and [math]\displaystyle{ Y }[/math],
Proof. - [math]\displaystyle{ \begin{align} \mathbf{E}[X\cdot Y] &= \sum_{x,y}xy\Pr[X=x\wedge Y=y]\\ &= \sum_{x,y}xy\Pr[X=x]\Pr[Y=y]\\ &= \sum_{x}x\Pr[X=x]\sum_{y}y\Pr[Y=y]\\ &= \mathbf{E}[X]\cdot\mathbf{E}[Y]. \end{align} }[/math]
- [math]\displaystyle{ \square }[/math]
With the above theorem, we can show that the covariance of two independent variables is always zero.
Theorem - For any two independent random variables [math]\displaystyle{ X }[/math] and [math]\displaystyle{ Y }[/math],
- [math]\displaystyle{ \begin{align} \mathbf{Cov}(X,Y)=0. \end{align} }[/math]
- For any two independent random variables [math]\displaystyle{ X }[/math] and [math]\displaystyle{ Y }[/math],
Proof. - [math]\displaystyle{ \begin{align} \mathbf{Cov}(X,Y) &=\mathbf{E}\left[(X-\mathbf{E}[X])(Y-\mathbf{E}[Y])\right]\\ &= \mathbf{E}\left[X-\mathbf{E}[X]\right]\mathbf{E}\left[Y-\mathbf{E}[Y]\right] &\qquad(\mbox{Independence})\\ &=0. \end{align} }[/math]
- [math]\displaystyle{ \square }[/math]
We then have the following theorem for the variance of the sum of pairwise independent random variables.
Theorem - For pairwise independent random variables [math]\displaystyle{ X_1,X_2,\ldots,X_n }[/math],
- [math]\displaystyle{ \begin{align} \mathbf{Var}\left[\sum_{i=1}^n X_i\right]=\sum_{i=1}^n\mathbf{Var}[X_i]. \end{align} }[/math]
- For pairwise independent random variables [math]\displaystyle{ X_1,X_2,\ldots,X_n }[/math],
- Remark
- The theorem holds for pairwise independent random variables, a much weaker independence requirement than the mutual independence. This makes the variance-based probability tools work even for weakly random cases. We will see what it exactly means in the future lectures.
Chebyshev's inequality
With the information of the expectation and variance of a random variable, one can derive a stronger tail bound known as Chebyshev's Inequality.
Theorem (Chebyshev's Inequality) - For any [math]\displaystyle{ t\gt 0 }[/math],
- [math]\displaystyle{ \begin{align} \Pr\left[|X-\mathbf{E}[X]| \ge t\right] \le \frac{\mathbf{Var}[X]}{t^2}. \end{align} }[/math]
- For any [math]\displaystyle{ t\gt 0 }[/math],
Proof. Observe that - [math]\displaystyle{ \Pr[|X-\mathbf{E}[X]| \ge t] = \Pr[(X-\mathbf{E}[X])^2 \ge t^2]. }[/math]
Since [math]\displaystyle{ (X-\mathbf{E}[X])^2 }[/math] is a nonnegative random variable, we can apply Markov's inequality, such that
- [math]\displaystyle{ \Pr[(X-\mathbf{E}[X])^2 \ge t^2] \le \frac{\mathbf{E}[(X-\mathbf{E}[X])^2]}{t^2} =\frac{\mathbf{Var}[X]}{t^2}. }[/math]
- [math]\displaystyle{ \square }[/math]
Erdős–Rényi Random Graphs
The probabilistic method
Coloring large-girth graphs
Definition Let [math]\displaystyle{ G(V,E) }[/math] be an undirected graph.
- A cycle of length [math]\displaystyle{ k }[/math] in [math]\displaystyle{ G }[/math] is a sequence of distinct vertices [math]\displaystyle{ v_1,v_2,\ldots,v_{k} }[/math] such that [math]\displaystyle{ v_iv_{i+1}\in E }[/math] for all [math]\displaystyle{ i=1,2,\ldots,k-1 }[/math] and [math]\displaystyle{ v_kv_1\in E }[/math].
- The girth of [math]\displaystyle{ G }[/math], dented [math]\displaystyle{ g(G) }[/math], is the length of the shortest cycle in [math]\displaystyle{ G }[/math].
- The chromatic number of [math]\displaystyle{ G }[/math], denoted [math]\displaystyle{ \chi(G) }[/math], is the minimal number of colors which we need to color the vertices of [math]\displaystyle{ G }[/math] so that no two adjacent vertices have the same color. Formally,
- [math]\displaystyle{ \chi(G)=\min\{C\in\mathbb{N}\mid \exists f:V\rightarrow[C]\mbox{ such that }\forall uv\in E, f(u)\neq f(v)\} }[/math].
- The independence number of [math]\displaystyle{ G }[/math], denoted [math]\displaystyle{ \alpha(G) }[/math], is the size of the largest independent set in [math]\displaystyle{ G }[/math]. Formally,
- [math]\displaystyle{ \alpha(G)=\max\{|S|\mid S\subseteq V\mbox{ and }\forall u,v\in S, uv\not\in E\} }[/math].
Theorem (Erdős 1959) - For all [math]\displaystyle{ k,\ell }[/math] there exists a graph [math]\displaystyle{ G }[/math] with [math]\displaystyle{ g(G)\gt \ell }[/math] and [math]\displaystyle{ \chi(G)\gt k\, }[/math].
Monotone properties
Definition - Let [math]\displaystyle{ \mathcal{G}_n=2^{V\choose 2} }[/math], where [math]\displaystyle{ |V|=n }[/math], be the set of all possible graphs on [math]\displaystyle{ n }[/math] vertices. A graph property is a boolean function [math]\displaystyle{ P:\mathcal{G}_n\rightarrow\{0,1\} }[/math] which is invariant under permutation of vertices, i.e. [math]\displaystyle{ P(G)=P(H) }[/math] whenever [math]\displaystyle{ G }[/math] is isomorphic to [math]\displaystyle{ H }[/math].
Definition - A graph property [math]\displaystyle{ P }[/math] is monotone if for any [math]\displaystyle{ G\subseteq H }[/math], both on [math]\displaystyle{ n }[/math] vertices, [math]\displaystyle{ G }[/math] having property [math]\displaystyle{ P }[/math] implies [math]\displaystyle{ H }[/math] having property [math]\displaystyle{ P }[/math].
Theorem - Let [math]\displaystyle{ P }[/math] be a monotone graph property. Suppose [math]\displaystyle{ G_1=G(n,p_1) }[/math], [math]\displaystyle{ G_2=G(n,p_2) }[/math], and [math]\displaystyle{ 0\le p_1\le p_2\le 1 }[/math]. Then
- [math]\displaystyle{ \Pr[P(G_1)]\le \Pr[P(G_2)] }[/math].
- Let [math]\displaystyle{ P }[/math] be a monotone graph property. Suppose [math]\displaystyle{ G_1=G(n,p_1) }[/math], [math]\displaystyle{ G_2=G(n,p_2) }[/math], and [math]\displaystyle{ 0\le p_1\le p_2\le 1 }[/math]. Then
Threshold phenomenon
Theorem - The threshold for a random graph [math]\displaystyle{ G(n,p) }[/math] to contain a 4-clique is [math]\displaystyle{ p=n^{2/3} }[/math].
Definition - The density of a graph [math]\displaystyle{ G(V,E) }[/math], denoted [math]\displaystyle{ \rho(G)\, }[/math], is defined as [math]\displaystyle{ \rho(G)=\frac{|E|}{|V|} }[/math].
- A graph [math]\displaystyle{ G(V,E) }[/math] is balanced if [math]\displaystyle{ \rho(H)\le \rho(G) }[/math] for all subgraphs [math]\displaystyle{ H }[/math] of [math]\displaystyle{ G }[/math].
Theorem (Erdős–Rényi 1960) - Let [math]\displaystyle{ H }[/math] be a balanced graph with [math]\displaystyle{ k }[/math] vertices and [math]\displaystyle{ \ell }[/math] edges. The threshold for the property that a random graph [math]\displaystyle{ G(n,p) }[/math] contains a (not necessarily induced) subgraph isomorphic to [math]\displaystyle{ H }[/math] is [math]\displaystyle{ p=n^{-k/\ell}\, }[/math].
Concentration
Definition - The clique number of a graph [math]\displaystyle{ G(V,E) }[/math], denoted [math]\displaystyle{ \omega(G) }[/math], is the size of the largest clique in [math]\displaystyle{ G }[/math]. Formally,
- [math]\displaystyle{ \omega(G)=\max\{|S|\mid S\subseteq V\mbox{ and }\forall u,v\in S, uv\in E\} }[/math].
- The clique number of a graph [math]\displaystyle{ G(V,E) }[/math], denoted [math]\displaystyle{ \omega(G) }[/math], is the size of the largest clique in [math]\displaystyle{ G }[/math]. Formally,
Theorem (Bollobás-Erdős 1976; Matula 1976) - Let [math]\displaystyle{ G=G(n,\frac{1}{2}) }[/math]. There exists [math]\displaystyle{ k=k(n) }[/math] so that
- [math]\displaystyle{ \Pr[\omega(G)=k\mbox{ or }k+1]\rightarrow 1 }[/math] as [math]\displaystyle{ n\rightarrow\infty }[/math].
- Let [math]\displaystyle{ G=G(n,\frac{1}{2}) }[/math]. There exists [math]\displaystyle{ k=k(n) }[/math] so that
Theorem (Bollobás 1988) - Let [math]\displaystyle{ G=G(n,\frac{1}{2}) }[/math]. Almost always
- [math]\displaystyle{ \chi(G)\sim\frac{n}{2\log_2 n} }[/math].
- Let [math]\displaystyle{ G=G(n,\frac{1}{2}) }[/math]. Almost always