Combinatorics (Fall 2010)/Extremal graphs: Difference between revisions

From TCS Wiki
Jump to navigation Jump to search
imported>WikiSysop
imported>WikiSysop
Line 7: Line 7:


== Turán's theorem ==
== Turán's theorem ==
{{Theorem|Theorem (Turán 1941)|
:Let <math>G(V,E)</math> be a graph with <math>|V|=n</math>. If <math>G</math> has no <math>(k+1)</math>-clique, <math>k\ge 2</math>, then
::<math>|E|\le\left(1-\frac{1}{k}\right)\frac{n^2}{2}</math>.
}}


== Erdős–Stone theorem ==
== Erdős–Stone theorem ==

Revision as of 07:40, 13 October 2010

Extremal Graph Theory

Mantel's theorem

Theorem (Mantel 1907)
If a graph [math]\displaystyle{ G }[/math] on [math]\displaystyle{ 2n }[/math] vertices contains [math]\displaystyle{ n^2+1 }[/math] edges, then [math]\displaystyle{ G }[/math] contains a triangle.

Turán's theorem

Theorem (Turán 1941)
Let [math]\displaystyle{ G(V,E) }[/math] be a graph with [math]\displaystyle{ |V|=n }[/math]. If [math]\displaystyle{ G }[/math] has no [math]\displaystyle{ (k+1) }[/math]-clique, [math]\displaystyle{ k\ge 2 }[/math], then
[math]\displaystyle{ |E|\le\left(1-\frac{1}{k}\right)\frac{n^2}{2} }[/math].

Erdős–Stone theorem

Cycle Structures

Girth

Hamiltonian cycle