Combinatorics (Fall 2010)/Extremal graphs: Difference between revisions
Jump to navigation
Jump to search
imported>WikiSysop |
imported>WikiSysop |
||
Line 7: | Line 7: | ||
== Turán's theorem == | == Turán's theorem == | ||
{{Theorem|Theorem (Turán 1941)| | |||
:Let <math>G(V,E)</math> be a graph with <math>|V|=n</math>. If <math>G</math> has no <math>(k+1)</math>-clique, <math>k\ge 2</math>, then | |||
::<math>|E|\le\left(1-\frac{1}{k}\right)\frac{n^2}{2}</math>. | |||
}} | |||
== Erdős–Stone theorem == | == Erdős–Stone theorem == |
Revision as of 07:40, 13 October 2010
Extremal Graph Theory
Mantel's theorem
Theorem (Mantel 1907) - If a graph [math]\displaystyle{ G }[/math] on [math]\displaystyle{ 2n }[/math] vertices contains [math]\displaystyle{ n^2+1 }[/math] edges, then [math]\displaystyle{ G }[/math] contains a triangle.
Turán's theorem
Theorem (Turán 1941) - Let [math]\displaystyle{ G(V,E) }[/math] be a graph with [math]\displaystyle{ |V|=n }[/math]. If [math]\displaystyle{ G }[/math] has no [math]\displaystyle{ (k+1) }[/math]-clique, [math]\displaystyle{ k\ge 2 }[/math], then
- [math]\displaystyle{ |E|\le\left(1-\frac{1}{k}\right)\frac{n^2}{2} }[/math].
- Let [math]\displaystyle{ G(V,E) }[/math] be a graph with [math]\displaystyle{ |V|=n }[/math]. If [math]\displaystyle{ G }[/math] has no [math]\displaystyle{ (k+1) }[/math]-clique, [math]\displaystyle{ k\ge 2 }[/math], then