Combinatorics (Fall 2010)/Extremal graphs: Difference between revisions
imported>WikiSysop |
imported>WikiSysop |
||
Line 28: | Line 28: | ||
=== Turán's theorem === | === Turán's theorem === | ||
{{Theorem|Theorem (Turán 1941)| | {{Theorem|Theorem (Turán 1941)| | ||
:Let <math>G(V,E)</math> be a graph with <math>|V|=n</math>. If <math>G</math> has no <math> | :Let <math>G(V,E)</math> be a graph with <math>|V|=n</math>. If <math>G</math> has no <math>k</math>-clique, <math>k\ge 2</math>, then | ||
::<math>|E|\le\left(1-\frac{1}{k}\right)\frac{n^2}{2}</math>. | ::<math>|E|\le\left(1-\frac{1}{k-1}\right)\frac{n^2}{2}</math>. | ||
}} | }} | ||
Line 42: | Line 42: | ||
{{Prooftitle|Fourth proof.| | {{Prooftitle|Fourth proof.| | ||
Let <math>G(V,E)</math> be a <math> | Let <math>G(V,E)</math> be a <math>k</math>-clique-free graph on <math>n</math> vertices with a maximum number of edges. | ||
:'''Claim:''' <math>G</math> does not contain three vertices <math>u,v,w</math> such that <math>uv\in E</math> but <math>uw\not\in E, vw\not\in E</math>. | :'''Claim:''' <math>G</math> does not contain three vertices <math>u,v,w</math> such that <math>uv\in E</math> but <math>uw\not\in E, vw\not\in E</math>. | ||
Suppose otherwise. There are two cases. | Suppose otherwise. There are two cases. | ||
* '''Case.1:''' <math>d(w)<d(u)</math> or <math>d(w)<d(v)</math>. Without loss of generality, suppose that <math>d(w)<d(u)</math>. We duplicate <math>u</math> by creating a new vertex <math>u'</math> which has exactly the same neighbors as <math>u</math> (but <math>uu'</math> is not an edge). Such duplication will not increase the clique size. We then remove <math>w</math>. The resulting graph <math>G'</math> is still <math> | * '''Case.1:''' <math>d(w)<d(u)</math> or <math>d(w)<d(v)</math>. Without loss of generality, suppose that <math>d(w)<d(u)</math>. We duplicate <math>u</math> by creating a new vertex <math>u'</math> which has exactly the same neighbors as <math>u</math> (but <math>uu'</math> is not an edge). Such duplication will not increase the clique size. We then remove <math>w</math>. The resulting graph <math>G'</math> is still <math>k</math>-clique-free, and has <math>n</math> vertices. The number of edges in <math>G'</math> is | ||
::<math>|E(G')|=|E(G)|+d(u)-d(w)>|E(G)|\,</math>, | ::<math>|E(G')|=|E(G)|+d(u)-d(w)>|E(G)|\,</math>, | ||
:which contradicts the assumption that <math>|E(G)|</math> is maximal. | :which contradicts the assumption that <math>|E(G)|</math> is maximal. | ||
* '''Case.2:''' <math>d(w)\ge d(u)</math> and <math>d(w)\ge d(v)</math>. Duplicate <math>w</math> twice and delete <math>u</math> and <math>v</math>. The new graph <math>G'</math> has no <math> | * '''Case.2:''' <math>d(w)\ge d(u)</math> and <math>d(w)\ge d(v)</math>. Duplicate <math>w</math> twice and delete <math>u</math> and <math>v</math>. The new graph <math>G'</math> has no <math>k</math>-clique, and the number of edges is | ||
::<math>|E(G')|=|E(G)|+2d(w)-(d(u)+d(v)+1)>|E(G)|\,</math>. | ::<math>|E(G')|=|E(G)|+2d(w)-(d(u)+d(v)+1)>|E(G)|\,</math>. | ||
:Contradiction again. | :Contradiction again. | ||
The claim implies that <math>uv\not\in E</math> defines an equivalence relation on vertices (to be more precise, it guarantees the transitivity of the relation, while the reflexivity and symmetry hold directly). Graph <math>G</math> must be a complete multipartite graph <math>K_{n_1,n_2,\ldots, | The claim implies that <math>uv\not\in E</math> defines an equivalence relation on vertices (to be more precise, it guarantees the transitivity of the relation, while the reflexivity and symmetry hold directly). Graph <math>G</math> must be a complete multipartite graph <math>K_{n_1,n_2,\ldots,n_{k-1}}</math> with <math>n_1+n_2+\cdots +n_{k-1}=n</math>. Optimize the edge number, we have the Turán graph. | ||
}} | }} | ||
Revision as of 13:07, 13 October 2010
Extremal Graph Theory
Mantel's theorem
We consider a typical extremal problem for graphs: the largest possible number of edges of triangle-free graphs, i.e. graphs contains no [math]\displaystyle{ K_3 }[/math].
Theorem (Mantel 1907) - Suppose [math]\displaystyle{ G(V,E) }[/math] is graph on [math]\displaystyle{ n }[/math] vertice without triangles. Then [math]\displaystyle{ |E|\le\frac{n^2}{4} }[/math].
First proof. (pigeonhole principle) - [math]\displaystyle{ \square }[/math]
Second proof. (Cauchy-Schwarz inequality) - [math]\displaystyle{ \square }[/math]
Third proof. (inequality of the arithmetic and geometric mean) Assume that [math]\displaystyle{ G(V,E) }[/math] has [math]\displaystyle{ |V|=n }[/math] vertices and is triangle-free.
Let [math]\displaystyle{ A }[/math] be the largest independent set in [math]\displaystyle{ G }[/math] and let [math]\displaystyle{ \alpha=|A| }[/math]. Since [math]\displaystyle{ G }[/math] is triangle-free, for very vertex [math]\displaystyle{ v }[/math], all its neighbors must form an independent set, thus [math]\displaystyle{ d(v)\le \alpha }[/math] for all [math]\displaystyle{ v\in V }[/math].
Take [math]\displaystyle{ B=V\setminus A }[/math] and let [math]\displaystyle{ \beta=|B| }[/math]. Since [math]\displaystyle{ A }[/math] is an independent set, all edges in [math]\displaystyle{ E }[/math] must have at least one endpoint in [math]\displaystyle{ B }[/math]. Counting the edges in [math]\displaystyle{ E }[/math] according to their endpoints in [math]\displaystyle{ B }[/math], we obtain [math]\displaystyle{ |E|\le\sum_{v\in B}d_v }[/math]. By the inequality of the arithmetic and geometric mean,
- [math]\displaystyle{ |E|\le\sum_{v\in B}d_v\le\alpha\beta\le\left(\frac{\alpha+\beta}{2}\right)^2=\frac{n^2}{4} }[/math].
- [math]\displaystyle{ \square }[/math]
Turán's theorem
Theorem (Turán 1941) - Let [math]\displaystyle{ G(V,E) }[/math] be a graph with [math]\displaystyle{ |V|=n }[/math]. If [math]\displaystyle{ G }[/math] has no [math]\displaystyle{ k }[/math]-clique, [math]\displaystyle{ k\ge 2 }[/math], then
- [math]\displaystyle{ |E|\le\left(1-\frac{1}{k-1}\right)\frac{n^2}{2} }[/math].
- Let [math]\displaystyle{ G(V,E) }[/math] be a graph with [math]\displaystyle{ |V|=n }[/math]. If [math]\displaystyle{ G }[/math] has no [math]\displaystyle{ k }[/math]-clique, [math]\displaystyle{ k\ge 2 }[/math], then
First proof. (induction) - [math]\displaystyle{ \square }[/math]
Second proof. (weight shifting) - [math]\displaystyle{ \square }[/math]
Third proof. (the probabilistic method) - [math]\displaystyle{ \square }[/math]
Fourth proof. Let [math]\displaystyle{ G(V,E) }[/math] be a [math]\displaystyle{ k }[/math]-clique-free graph on [math]\displaystyle{ n }[/math] vertices with a maximum number of edges.
- Claim: [math]\displaystyle{ G }[/math] does not contain three vertices [math]\displaystyle{ u,v,w }[/math] such that [math]\displaystyle{ uv\in E }[/math] but [math]\displaystyle{ uw\not\in E, vw\not\in E }[/math].
Suppose otherwise. There are two cases.
- Case.1: [math]\displaystyle{ d(w)\lt d(u) }[/math] or [math]\displaystyle{ d(w)\lt d(v) }[/math]. Without loss of generality, suppose that [math]\displaystyle{ d(w)\lt d(u) }[/math]. We duplicate [math]\displaystyle{ u }[/math] by creating a new vertex [math]\displaystyle{ u' }[/math] which has exactly the same neighbors as [math]\displaystyle{ u }[/math] (but [math]\displaystyle{ uu' }[/math] is not an edge). Such duplication will not increase the clique size. We then remove [math]\displaystyle{ w }[/math]. The resulting graph [math]\displaystyle{ G' }[/math] is still [math]\displaystyle{ k }[/math]-clique-free, and has [math]\displaystyle{ n }[/math] vertices. The number of edges in [math]\displaystyle{ G' }[/math] is
- [math]\displaystyle{ |E(G')|=|E(G)|+d(u)-d(w)\gt |E(G)|\, }[/math],
- which contradicts the assumption that [math]\displaystyle{ |E(G)| }[/math] is maximal.
- Case.2: [math]\displaystyle{ d(w)\ge d(u) }[/math] and [math]\displaystyle{ d(w)\ge d(v) }[/math]. Duplicate [math]\displaystyle{ w }[/math] twice and delete [math]\displaystyle{ u }[/math] and [math]\displaystyle{ v }[/math]. The new graph [math]\displaystyle{ G' }[/math] has no [math]\displaystyle{ k }[/math]-clique, and the number of edges is
- [math]\displaystyle{ |E(G')|=|E(G)|+2d(w)-(d(u)+d(v)+1)\gt |E(G)|\, }[/math].
- Contradiction again.
The claim implies that [math]\displaystyle{ uv\not\in E }[/math] defines an equivalence relation on vertices (to be more precise, it guarantees the transitivity of the relation, while the reflexivity and symmetry hold directly). Graph [math]\displaystyle{ G }[/math] must be a complete multipartite graph [math]\displaystyle{ K_{n_1,n_2,\ldots,n_{k-1}} }[/math] with [math]\displaystyle{ n_1+n_2+\cdots +n_{k-1}=n }[/math]. Optimize the edge number, we have the Turán graph.
- [math]\displaystyle{ \square }[/math]