Combinatorics (Fall 2010)/Problem set 2: Difference between revisions
imported>WikiSysop |
imported>WikiSysop |
||
Line 22: | Line 22: | ||
注:令 <math>K_n</math> 的边集为 <math>E={V\choose 2}</math>,“对 <math>K_n</math> 的边的 <math>k</math> 着色",就是一个映射 <math>f: E\rightarrow [k]</math>。 | 注:令 <math>K_n</math> 的边集为 <math>E={V\choose 2}</math>,“对 <math>K_n</math> 的边的 <math>k</math> 着色",就是一个映射 <math>f: E\rightarrow [k]</math>。 | ||
即,每个边选择 <math>k</math> 种颜色之一进行着色,可以任意着色,无需考虑相邻的边是否同色(这种情况称为"proper“ coloring)。 | 即,每个边选择 <math>k</math> 种颜色之一进行着色,可以任意着色,无需考虑相邻的边是否同色(这种情况称为"proper“ coloring)。 | ||
Revision as of 14:07, 23 October 2010
第一题原说法有歧义,现在改成更精确的说法了。
Problem 1
( Due to Karger )
8种颜色的小球,每种20只,放到6个盒子里。证明无论怎么放,一定有一个盒子包含两对不同的小球 [math]\displaystyle{ \{a,b\} }[/math] 和 [math]\displaystyle{ \{�c,d\} }[/math]:每对小球的颜色都相同(即 [math]\displaystyle{ \{a,b\} }[/math] 颜色相同,[math]\displaystyle{ \{�c,d\} }[/math] 颜色相同),但两对球具有不同颜色(即 [math]\displaystyle{ \{a,b\} }[/math] 的颜色和 [math]\displaystyle{ \{c,d\} }[/math] 不同)。
尝试推广到一般情况(自己设计如何推广)。
(提示:用鸽笼原理。)
Problem 2
一个图[math]\displaystyle{ G }[/math] 的 independence number [math]\displaystyle{ \alpha(G) }[/math] 为 [math]\displaystyle{ G }[/math] 中最大的独立集 (independent set) 的大小。证明Turán定理的对偶(dual)版本:
定理 - 如果图 [math]\displaystyle{ G }[/math] 有 [math]\displaystyle{ n }[/math] 个结点,[math]\displaystyle{ \frac{nk}{2} }[/math] 条边,[math]\displaystyle{ k\ge 1 }[/math],则 [math]\displaystyle{ \alpha(G)\ge\frac{n}{k+1} }[/math]。
Problem 3
[math]\displaystyle{ H(W,F)\, }[/math] 为一个图,[math]\displaystyle{ n\gt |W|\, }[/math] 为一个整数。已知存在一个图 [math]\displaystyle{ G(V,E)\, }[/math] 有 [math]\displaystyle{ |V|=n, |E|=m\, }[/math] 且不包含 [math]\displaystyle{ H\, }[/math] 子图。
证明:对于 [math]\displaystyle{ k\gt \frac{n^2\ln n}{m} }[/math],存在一个对 [math]\displaystyle{ K_n\, }[/math]([math]\displaystyle{ n }[/math]结点完全图)的边的 [math]\displaystyle{ k }[/math] 着色,没有单色(monocharomatic)的[math]\displaystyle{ H\, }[/math]。
注:令 [math]\displaystyle{ K_n }[/math] 的边集为 [math]\displaystyle{ E={V\choose 2} }[/math],“对 [math]\displaystyle{ K_n }[/math] 的边的 [math]\displaystyle{ k }[/math] 着色",就是一个映射 [math]\displaystyle{ f: E\rightarrow [k] }[/math]。
即,每个边选择 [math]\displaystyle{ k }[/math] 种颜色之一进行着色,可以任意着色,无需考虑相邻的边是否同色(这种情况称为"proper“ coloring)。
(提示:概率法。)
Problem 4
- 证明:如果 [math]\displaystyle{ G(n,p) }[/math] "almost always" 具有property [math]\displaystyle{ P_1 }[/math],并且 [math]\displaystyle{ G(n,p) }[/math] "almost always" 具有property [math]\displaystyle{ P_2 }[/math],则 [math]\displaystyle{ G(n,p) }[/math] "almost always" 同时具有property [math]\displaystyle{ P_1 }[/math] 和 [math]\displaystyle{ P_2 }[/math]。
- 定义图性质[math]\displaystyle{ P }[/math]为:包含一个k个点的树的子图。性质P是否有threshold;如果有的话,threshold是什么?为什么?
大挑战 (Zarankiewicz's problem)
对 [math]\displaystyle{ a\ge 2 }[/math],令 [math]\displaystyle{ Z_a(n) }[/math] 为符合如下条件的最小的 [math]\displaystyle{ k }[/math]:所有包含多于 [math]\displaystyle{ k }[/math] 个 1 的 [math]\displaystyle{ n\times n }[/math] 的 0-1 矩阵都必有[math]\displaystyle{ a\times a }[/math] 的全1的子矩阵(行、列未必连续)。
- 证明:如果一个二分图(bipartite graph)[math]\displaystyle{ G(V_1,V_2,E) }[/math] 有 [math]\displaystyle{ |V_1|=|V_2|=n }[/math](即左、右两边各[math]\displaystyle{ n }[/math]个点)且不包含子图 [math]\displaystyle{ K_{a,a} }[/math](左、右两边各[math]\displaystyle{ a }[/math]个点的完全二分图),则 [math]\displaystyle{ |E|\le Z_a(n) }[/math]。
- (due to Erdős-Spencer) 证明:[math]\displaystyle{ Z_a(n)=\Omega(n^{2-2/a})\, }[/math]。