Combinatorics (Fall 2010)/Extremal set theory II: Difference between revisions

From TCS Wiki
Jump to navigation Jump to search
imported>WikiSysop
No edit summary
imported>WikiSysop
No edit summary
Line 1: Line 1:
== Kruskal–Katona theorem ==
{{Theorem|Theorem (Kruskal 1963, Katona 1966)|
:Let <math>\mathcal{F}\subseteq {X\choose k}</math> with <math>|\mathcal{F}|=m</math>, and suppose that
::<math>m={n_k\choose k}+{n_{k-1}\choose k-1}+\cdots+{n_t\choose t}</math>
:where <math>a_k>a_{k-1}>\cdots>a_t\ge t\ge 1</math>. Then
::<math>|\Delta\mathcal{F}|\ge {n_k\choose k-1}+{n_{k-1}\choose k-2}+\cdots+{n_t\choose t-1}</math>.
}}
== Blocking sets ==
== Blocking sets ==



Revision as of 09:01, 27 October 2010

Kruskal–Katona theorem

Theorem (Kruskal 1963, Katona 1966)
Let [math]\displaystyle{ \mathcal{F}\subseteq {X\choose k} }[/math] with [math]\displaystyle{ |\mathcal{F}|=m }[/math], and suppose that
[math]\displaystyle{ m={n_k\choose k}+{n_{k-1}\choose k-1}+\cdots+{n_t\choose t} }[/math]
where [math]\displaystyle{ a_k\gt a_{k-1}\gt \cdots\gt a_t\ge t\ge 1 }[/math]. Then
[math]\displaystyle{ |\Delta\mathcal{F}|\ge {n_k\choose k-1}+{n_{k-1}\choose k-2}+\cdots+{n_t\choose t-1} }[/math].


Blocking sets

Duality

Block sensitivity and certificates

The switching lemma

Hypergraph coloring

Theorem (Erdős 1963)
Let [math]\displaystyle{ \mathcal{F} }[/math] be a [math]\displaystyle{ k }[/math]-uniform. If [math]\displaystyle{ |\mathcal{F}|\lt 2^{k-1} }[/math] then [math]\displaystyle{ \mathcal{F} }[/math] is 2-colorable.

Lovász local lemma

Colorings

Theorem (Erdős-Lovász 1975)
Let [math]\displaystyle{ \mathcal{F} }[/math] be a [math]\displaystyle{ k }[/math]-uniform. If every member of [math]\displaystyle{ \mathcal{F} }[/math] intersects at most [math]\displaystyle{ 2^{k-3} }[/math] other members, then [math]\displaystyle{ \mathcal{F} }[/math] is 2-colorable.