Combinatorics (Fall 2010)/Ramsey theory: Difference between revisions

From TCS Wiki
Jump to navigation Jump to search
imported>WikiSysop
imported>WikiSysop
Line 2: Line 2:
{{Theorem|Ramsey's Theorem|
{{Theorem|Ramsey's Theorem|
:Let <math>r, s, k</math> be positive integers. Then there exists an integer <math>N</math> with the following property:
:Let <math>r, s, k</math> be positive integers. Then there exists an integer <math>N</math> with the following property:
:If <math>|X|\ge N</math> and <math>f:{X\choose r}\rightarrow[s]</math> is an arbitrary <math>s</math>-coloring of <math>{X\choose r}</math>, then there exists a subset <math>Y\subseteq Y</math> with <math>Y\ge k</math> such that <math>{Y\choose r}</math> is monochromatic.
:If <math>|X|\ge N</math> and <math>f:{X\choose r}\rightarrow\{1,2,\ldots,s\}</math> is an arbitrary <math>s</math>-coloring of <math>{X\choose r}</math>, then there exists a subset <math>Y\subseteq X</math> with <math>|Y|\ge k</math> such that <math>{Y\choose r}</math> is monochromatic.
}}
 
{{Theorem|Ramsey's Theorem|
:Let <math>r, s, k_1,k_2,\ldots,k_s</math> be positive integers. Then there exists an integer <math>N</math> with the following property:
:If <math>|X|\ge N</math> and <math>f:{X\choose r}\rightarrow\{1,2,\ldots,s\}</math> is an arbitrary <math>s</math>-coloring of <math>{X\choose r}</math>, then there exist an <math>i\in\{1,2,\ldots,s\}</math> and a subset <math>Y\subseteq X</math> with <math>|Y|\ge k_i</math> such that all members of <math>{Y\choose r}</math> are colored with the <math>i</math>th color by <math>f</math>.
}}
}}



Revision as of 10:04, 17 November 2010

Ramsey's Theorem

Ramsey's Theorem
Let [math]\displaystyle{ r, s, k }[/math] be positive integers. Then there exists an integer [math]\displaystyle{ N }[/math] with the following property:
If [math]\displaystyle{ |X|\ge N }[/math] and [math]\displaystyle{ f:{X\choose r}\rightarrow\{1,2,\ldots,s\} }[/math] is an arbitrary [math]\displaystyle{ s }[/math]-coloring of [math]\displaystyle{ {X\choose r} }[/math], then there exists a subset [math]\displaystyle{ Y\subseteq X }[/math] with [math]\displaystyle{ |Y|\ge k }[/math] such that [math]\displaystyle{ {Y\choose r} }[/math] is monochromatic.
Ramsey's Theorem
Let [math]\displaystyle{ r, s, k_1,k_2,\ldots,k_s }[/math] be positive integers. Then there exists an integer [math]\displaystyle{ N }[/math] with the following property:
If [math]\displaystyle{ |X|\ge N }[/math] and [math]\displaystyle{ f:{X\choose r}\rightarrow\{1,2,\ldots,s\} }[/math] is an arbitrary [math]\displaystyle{ s }[/math]-coloring of [math]\displaystyle{ {X\choose r} }[/math], then there exist an [math]\displaystyle{ i\in\{1,2,\ldots,s\} }[/math] and a subset [math]\displaystyle{ Y\subseteq X }[/math] with [math]\displaystyle{ |Y|\ge k_i }[/math] such that all members of [math]\displaystyle{ {Y\choose r} }[/math] are colored with the [math]\displaystyle{ i }[/math]th color by [math]\displaystyle{ f }[/math].

Ramsey number

The "Happy Ending" problem

The happy ending problem
Any set of 5 points in the plane, no three on a line, has a subset of 4 points that form the vertices of a convex quadrilateral.

See the article [1] for the proof.

We say a set of points in the plane in general positions if no three of the points are on the same line.

Theorem (Erdős-Szekeres 1935)
For any positive integer [math]\displaystyle{ n\ge 3 }[/math], there is an [math]\displaystyle{ N(n) }[/math] such that any set of at least [math]\displaystyle{ N(n) }[/math] points in general position in the plane (i.e., no three of the points are on a line) contains [math]\displaystyle{ n }[/math] points that are the vertices of a convex [math]\displaystyle{ n }[/math]-gon.

Yao's lower bound on implicit data structures

Linial's lower bound on local computations

Ramsey-like Theorems

Van der Waerden's Theorem

Hales–Jewett Theorem