Combinatorics (Fall 2010)/Flow and matching: Difference between revisions

From TCS Wiki
Jump to navigation Jump to search
imported>WikiSysop
imported>WikiSysop
Line 20: Line 20:


=== The augmenting paths ===
=== The augmenting paths ===
{{Theorem|Definition (Augmenting path)|
:Let <math>f</math> be a flow in <math>G</math>. A path <math>P=u_0u_1\cdots u_k</math> in the underlying undirected graph is an '''augmenting path to <math>u_k</math>''' if
:* <math>u_0=s\,</math>;
:and for each edge <math>u_{i}u_{i+1}</math> in <math>P</math> we have
:* <math>f(u_i,u_{i+1})<c(u_i,u_{i+1})\,</math> when <math>(u_{i},u_{i+1})\in E</math>, and
:* <math>f(u_{i+1},u_i)>0\,</math> when <math>(u_{i+1},u_{i})\in E</math>.
:If <math>u_k=t</math>, we simply call <math>P</math> an '''augmenting path'''.
}}


=== The max-flow min-cut theorem ===
=== The max-flow min-cut theorem ===

Revision as of 09:49, 18 December 2010

Flow

The maximum flow problem

An instance of the maximum flow problem consists of:

  • a directed graph [math]\displaystyle{ G(V,E) }[/math];
  • two distinguished vertices [math]\displaystyle{ s }[/math] (the source) and [math]\displaystyle{ t }[/math] (the sink), where the in-degree of [math]\displaystyle{ s }[/math] and the out-degree of [math]\displaystyle{ t }[/math] are both 0;
  • the capacity function [math]\displaystyle{ c:E\rightarrow\mathbb{R}^+ }[/math] which associates each directed edge [math]\displaystyle{ (u,v)\in E }[/math] a nonnegative real number [math]\displaystyle{ c_{uv} }[/math] called the capacity of the edge.

The quadruple [math]\displaystyle{ (G,c,s,t) }[/math] is called a flow network.

A function [math]\displaystyle{ f:E\rightarrow\mathbb{R}^+ }[/math] is called a flow (or an [math]\displaystyle{ s }[/math]-[math]\displaystyle{ t }[/math] flow) in the network [math]\displaystyle{ G(V,E) }[/math] if it satisfies:

  • Capacity constraint: [math]\displaystyle{ f_{uv}\le c_{uv} }[/math] for all [math]\displaystyle{ (u,v)\in E }[/math].
  • Conservation constraint: [math]\displaystyle{ \sum_{u:(u,v)\in E}f_{uv}=\sum_{w:(v,w)\in E}f_{vw} }[/math] for all [math]\displaystyle{ v\in V\setminus\{s,t\} }[/math].

The value of the flow [math]\displaystyle{ f }[/math] is [math]\displaystyle{ \sum_{v:(s,v)\in E}f_{sv} }[/math].

Given a flow network, the maximum flow problem asks to find the flow of the maximum value.

Cuts

The augmenting paths

Definition (Augmenting path)
Let [math]\displaystyle{ f }[/math] be a flow in [math]\displaystyle{ G }[/math]. A path [math]\displaystyle{ P=u_0u_1\cdots u_k }[/math] in the underlying undirected graph is an augmenting path to [math]\displaystyle{ u_k }[/math] if
  • [math]\displaystyle{ u_0=s\, }[/math];
and for each edge [math]\displaystyle{ u_{i}u_{i+1} }[/math] in [math]\displaystyle{ P }[/math] we have
  • [math]\displaystyle{ f(u_i,u_{i+1})\lt c(u_i,u_{i+1})\, }[/math] when [math]\displaystyle{ (u_{i},u_{i+1})\in E }[/math], and
  • [math]\displaystyle{ f(u_{i+1},u_i)\gt 0\, }[/math] when [math]\displaystyle{ (u_{i+1},u_{i})\in E }[/math].
If [math]\displaystyle{ u_k=t }[/math], we simply call [math]\displaystyle{ P }[/math] an augmenting path.

The max-flow min-cut theorem

Unimodularity

Integrality of polytopes

Unimodularity and total unimodularity