Combinatorics (Fall 2010)/Flow and matching: Difference between revisions
imported>WikiSysop |
imported>WikiSysop |
||
Line 38: | Line 38: | ||
=== Cuts === | === Cuts === | ||
{{Theorem|Lemma| | {{Theorem|Lemma| | ||
:Let <math>(G(V,E),c,s,t)</math> be a flow network. Let <math>f</math> be an arbitrary flow in <math>G</math>, and let <math>S</math> be an arbitrary <math>s</math>-<math>t</math> cut. | :Let <math>(G(V,E),c,s,t)</math> be a flow network. Let <math>f</math> be an arbitrary flow in <math>G</math>, and let <math>S</math> be an arbitrary <math>s</math>-<math>t</math> cut. Then | ||
::<math>\sum_{v:(s,v)}f_{sv}\le \sum_{u\in S,v\not\in S\atop (u,v)\in E}c_{uv}</math>, | ::<math>\sum_{v:(s,v)}f_{sv}\le \sum_{u\in S,v\not\in S\atop (u,v)\in E}c_{uv}</math>, | ||
:that is, the value of any flow is no greater than the value of any cut. | :that is, the value of any flow is no greater than the value of any cut. |
Revision as of 09:41, 19 December 2010
Flow
The maximum flow problem
An instance of the maximum flow problem consists of:
- a directed graph [math]\displaystyle{ G(V,E) }[/math];
- two distinguished vertices [math]\displaystyle{ s }[/math] (the source) and [math]\displaystyle{ t }[/math] (the sink), where the in-degree of [math]\displaystyle{ s }[/math] and the out-degree of [math]\displaystyle{ t }[/math] are both 0;
- the capacity function [math]\displaystyle{ c:E\rightarrow\mathbb{R}^+ }[/math] which associates each directed edge [math]\displaystyle{ (u,v)\in E }[/math] a nonnegative real number [math]\displaystyle{ c_{uv} }[/math] called the capacity of the edge.
The quadruple [math]\displaystyle{ (G,c,s,t) }[/math] is called a flow network.
A function [math]\displaystyle{ f:E\rightarrow\mathbb{R}^+ }[/math] is called a flow (or an [math]\displaystyle{ s }[/math]-[math]\displaystyle{ t }[/math] flow) in the network [math]\displaystyle{ G(V,E) }[/math] if it satisfies:
- Capacity constraint: [math]\displaystyle{ f_{uv}\le c_{uv} }[/math] for all [math]\displaystyle{ (u,v)\in E }[/math].
- Conservation constraint: [math]\displaystyle{ \sum_{u:(u,v)\in E}f_{uv}=\sum_{w:(v,w)\in E}f_{vw} }[/math] for all [math]\displaystyle{ v\in V\setminus\{s,t\} }[/math].
The value of the flow [math]\displaystyle{ f }[/math] is [math]\displaystyle{ \sum_{v:(s,v)\in E}f_{sv} }[/math].
Given a flow network, the maximum flow problem asks to find the flow of the maximum value.
The maximum flow problem can be described as the following linear program.
- [math]\displaystyle{ \begin{align} \text{maximize} \quad& \sum_{v:(s,v)\in E}f_{sv}\\ \begin{align} \text{subject to} \\ \\ \\ \\ \end{align} \quad & \begin{align} f_{uv}&\le c_{uv} &\quad& \forall (u,v)\in E\\ \sum_{u:(u,v)\in E}f_{uv}-\sum_{w:(v,w)\in E}f_{vw} &=0 &\quad& \forall v\in V\setminus\{s,t\}\\ f_{uv}&\ge 0 &\quad& \forall (u,v)\in E \end{align} \end{align} }[/math]
Cuts
Lemma - Let [math]\displaystyle{ (G(V,E),c,s,t) }[/math] be a flow network. Let [math]\displaystyle{ f }[/math] be an arbitrary flow in [math]\displaystyle{ G }[/math], and let [math]\displaystyle{ S }[/math] be an arbitrary [math]\displaystyle{ s }[/math]-[math]\displaystyle{ t }[/math] cut. Then
- [math]\displaystyle{ \sum_{v:(s,v)}f_{sv}\le \sum_{u\in S,v\not\in S\atop (u,v)\in E}c_{uv} }[/math],
- that is, the value of any flow is no greater than the value of any cut.
- Let [math]\displaystyle{ (G(V,E),c,s,t) }[/math] be a flow network. Let [math]\displaystyle{ f }[/math] be an arbitrary flow in [math]\displaystyle{ G }[/math], and let [math]\displaystyle{ S }[/math] be an arbitrary [math]\displaystyle{ s }[/math]-[math]\displaystyle{ t }[/math] cut. Then
Proof. Since [math]\displaystyle{ S }[/math] is an [math]\displaystyle{ s }[/math]-[math]\displaystyle{ t }[/math] cut, [math]\displaystyle{ s\in S }[/math] and [math]\displaystyle{ t\not\in S }[/math]. Due to the conservation of flow, - [math]\displaystyle{ \sum_{u\in S}\left(\sum_{v:(u,v)\in E}f_{uv}-\sum_{v:(v,u)\in E}f_{vu}\right)=\sum_{v:(s,v)\in E}f_{sv}+\sum_{u\in S\setminus\{s\}}\left(\sum_{v:(u,v)\in E}f_{uv}-\sum_{v:(v,u)\in E}f_{vu}\right)=\sum_{v:(s,v)\in E}f_{sv}\,. }[/math]
On the other hand, summing flow over edges,
- [math]\displaystyle{ \sum_{v\in S}\left(\sum_{u:(u,v)\in E}f_{uv}-\sum_{u:(v,u)\in E}f_{vu}\right)=\sum_{u\in S,v\in S\atop (u,v)\in E}\left(f_{uv}-f_{uv}\right)+\sum_{u\in S,v\not\in S\atop (u,v)\in E}f_{uv}-\sum_{u\in S,v\not\in S\atop (v,u)\in E}f_{vu}=\sum_{u\in S,v\not\in S\atop (u,v)\in E}f_{uv}-\sum_{u\in S,v\not\in S\atop (v,u)\in E}f_{vu}\,. }[/math]
Therefore,
- [math]\displaystyle{ \sum_{v:(s,v)\in E}f_{sv}=\sum_{u\in S,v\not\in S\atop (u,v)\in E}f_{uv}-\sum_{u\in S,v\not\in S\atop (v,u)\in E}f_{vu}\le\sum_{u\in S,v\not\in S\atop (u,v)\in E}f_{uv}\le \sum_{u\in S,v\not\in S\atop (u,v)\in E}c_{uv}\,, }[/math]
- [math]\displaystyle{ \square }[/math]
The augmenting paths
Definition (Augmenting path) - Let [math]\displaystyle{ f }[/math] be a flow in [math]\displaystyle{ G }[/math]. An augmenting path to [math]\displaystyle{ u_k }[/math] is a sequence of distinct vertices [math]\displaystyle{ P=(u_0,u_1,\cdots, u_k) }[/math], such that
- [math]\displaystyle{ u_0=s\, }[/math];
- and each pair of consecutive vertices [math]\displaystyle{ u_{i}u_{i+1}\, }[/math] in [math]\displaystyle{ P }[/math] corresponds to either a forward edge [math]\displaystyle{ (u_{i},u_{i+1})\in E }[/math] or a reverse edge [math]\displaystyle{ (u_{i+1},u_{i})\in E }[/math], and
- [math]\displaystyle{ f(u_i,u_{i+1})\lt c(u_i,u_{i+1})\, }[/math] when [math]\displaystyle{ u_{i}u_{i+1}\, }[/math] corresponds to a forward edge [math]\displaystyle{ (u_{i},u_{i+1})\in E }[/math], and
- [math]\displaystyle{ f(u_{i+1},u_i)\gt 0\, }[/math] when [math]\displaystyle{ u_{i}u_{i+1}\, }[/math] corresponds to a reverse edge [math]\displaystyle{ (u_{i+1},u_{i})\in E }[/math].
- If [math]\displaystyle{ u_k=t\, }[/math], we simply call [math]\displaystyle{ P }[/math] an augmenting path.
- Let [math]\displaystyle{ f }[/math] be a flow in [math]\displaystyle{ G }[/math]. An augmenting path to [math]\displaystyle{ u_k }[/math] is a sequence of distinct vertices [math]\displaystyle{ P=(u_0,u_1,\cdots, u_k) }[/math], such that
Let [math]\displaystyle{ f }[/math] be a flow in [math]\displaystyle{ G }[/math]. Suppose there is an augmenting path [math]\displaystyle{ P=u_0u_1\cdots u_k }[/math], where [math]\displaystyle{ u_0=s }[/math] and [math]\displaystyle{ u_k=t }[/math]. Let [math]\displaystyle{ \epsilon\gt 0 }[/math] be a positive constant satisfying
- [math]\displaystyle{ \epsilon \le c(u_{i},u_{i+1})-f(u_i,u_{i+1}) }[/math] for all forward edges [math]\displaystyle{ (u_{i},u_{i+1})\in E }[/math] in [math]\displaystyle{ P }[/math];
- [math]\displaystyle{ \epsilon \le f(u_{i+1},u_i) }[/math] for all reverse edges [math]\displaystyle{ (u_{i+1},u_i)\in E }[/math] in [math]\displaystyle{ P }[/math].
Due to the definition of augmenting path, we can always find such a positive [math]\displaystyle{ \epsilon }[/math].
Increase [math]\displaystyle{ f(u_i,u_{i+1}) }[/math] by [math]\displaystyle{ \epsilon }[/math] for all forward edges [math]\displaystyle{ (u_{i},u_{i+1})\in E }[/math] in [math]\displaystyle{ P }[/math] and decrease [math]\displaystyle{ f(u_{i+1},u_i) }[/math] by [math]\displaystyle{ \epsilon }[/math] for all reverse edges [math]\displaystyle{ (u_{i+1},u_i)\in E }[/math] in [math]\displaystyle{ P }[/math]. Denote the modified flow by [math]\displaystyle{ f' }[/math]. It is easy to see that [math]\displaystyle{ f' }[/math] satisfies the capacity constraint and conservation constraint thus is still a valid flow. On the other hand, the value of the new flow [math]\displaystyle{ f' }[/math]
- [math]\displaystyle{ \sum_{v:(s,v)\in E}f_{sv}'=\epsilon+\sum_{v:(s,v)\in E}f_{sv}\gt \sum_{v:(s,v)\in E}f_{sv} }[/math].
Therefore, the value of the flow can be "augmented" by adjusting the flow on the augmenting path. This immediately implies that if a flow is maximum, then there is no augmenting path. Surprisingly, the converse is also true, thus maximum flows are "characterized" by augmenting paths.
Lemma - A flow [math]\displaystyle{ f }[/math] is maximum if and only if there are no augmenting paths.
Proof. We have already proved the "only if" direction above. Now we prove the "if" direction.
- [math]\displaystyle{ \square }[/math]