Combinatorics (Fall 2010)/Duality, Matroid: Difference between revisions
imported>WikiSysop Created page with '== Duality == == Matroid == Let <math>X</math> be a finite set and <math>\mathcal{F}\subseteq 2^X</math> be a family of subsets of <math>X</math>. A member set <math>S\in\math…' |
imported>WikiSysop |
||
Line 17: | Line 17: | ||
* A maximal independent subset of a set <math>Y\subset X</math>, i.e., a maximal <math>S\in\mathcal{F}_Y</math>, is called a '''basis''' of <math>Y</math>. | * A maximal independent subset of a set <math>Y\subset X</math>, i.e., a maximal <math>S\in\mathcal{F}_Y</math>, is called a '''basis''' of <math>Y</math>. | ||
* The size of the maximal <math>S\in\mathcal{F}_Y</math> is called the '''rank''' of <math>Y</math>, denoted <math>r(Y)</math>. | * The size of the maximal <math>S\in\mathcal{F}_Y</math> is called the '''rank''' of <math>Y</math>, denoted <math>r(Y)</math>. | ||
=== Greedy algorithms on weighted matroids === | |||
=== Matroid intersections === |
Revision as of 08:05, 26 December 2010
Duality
Matroid
Let [math]\displaystyle{ X }[/math] be a finite set and [math]\displaystyle{ \mathcal{F}\subseteq 2^X }[/math] be a family of subsets of [math]\displaystyle{ X }[/math]. A member set [math]\displaystyle{ S\in\mathcal{F} }[/math] is called maximal if [math]\displaystyle{ S\cup\{x\}\not\in\mathcal{F} }[/math] for any [math]\displaystyle{ x\in X\setminus S }[/math].
For [math]\displaystyle{ Y\subseteq X }[/math], denote [math]\displaystyle{ \mathcal{F}_Y=\{S\in\mathcal{F}\mid S\subseteq Y\} }[/math]. Clearly [math]\displaystyle{ \mathcal{F}_Y }[/math] is the restriction of [math]\displaystyle{ \mathcal{F} }[/math] over [math]\displaystyle{ 2^Y\, }[/math].
Definition - A set system [math]\displaystyle{ \mathcal{F}\subseteq 2^X }[/math] is a matroid if it satisfies:
- (hereditary) if [math]\displaystyle{ T\subseteq S\in\mathcal{F} }[/math] then [math]\displaystyle{ T\in\mathcal{F} }[/math];
- (matroid property) for every [math]\displaystyle{ Y\subseteq X }[/math], all maximal [math]\displaystyle{ S\in\mathcal{F}_Y }[/math] have the same [math]\displaystyle{ |S| }[/math].
- A set system [math]\displaystyle{ \mathcal{F}\subseteq 2^X }[/math] is a matroid if it satisfies:
Suppose [math]\displaystyle{ \mathcal{F} }[/math] is a matroid. Some matroid terminologies:
- Each member set [math]\displaystyle{ S\in\mathcal{F} }[/math] is called an independent set.
- A maximal independent subset of a set [math]\displaystyle{ Y\subset X }[/math], i.e., a maximal [math]\displaystyle{ S\in\mathcal{F}_Y }[/math], is called a basis of [math]\displaystyle{ Y }[/math].
- The size of the maximal [math]\displaystyle{ S\in\mathcal{F}_Y }[/math] is called the rank of [math]\displaystyle{ Y }[/math], denoted [math]\displaystyle{ r(Y) }[/math].