Combinatorics (Fall 2010)/Duality, Matroid: Difference between revisions

From TCS Wiki
Jump to navigation Jump to search
imported>WikiSysop
imported>WikiSysop
Line 3: Line 3:


== Matroid ==
== Matroid ==
=== Kruskal's greedy algorithm for MST ===
=== Matroids ===
Let <math>X</math> be a finite set and <math>\mathcal{F}\subseteq 2^X</math> be a family of subsets of <math>X</math>.  A member set <math>S\in\mathcal{F}</math> is called '''maximal''' if <math>S\cup\{x\}\not\in\mathcal{F}</math> for any <math>x\in X\setminus S</math>.
Let <math>X</math> be a finite set and <math>\mathcal{F}\subseteq 2^X</math> be a family of subsets of <math>X</math>.  A member set <math>S\in\mathcal{F}</math> is called '''maximal''' if <math>S\cup\{x\}\not\in\mathcal{F}</math> for any <math>x\in X\setminus S</math>.



Revision as of 08:06, 26 December 2010

Duality

Matroid

Kruskal's greedy algorithm for MST

Matroids

Let [math]\displaystyle{ X }[/math] be a finite set and [math]\displaystyle{ \mathcal{F}\subseteq 2^X }[/math] be a family of subsets of [math]\displaystyle{ X }[/math]. A member set [math]\displaystyle{ S\in\mathcal{F} }[/math] is called maximal if [math]\displaystyle{ S\cup\{x\}\not\in\mathcal{F} }[/math] for any [math]\displaystyle{ x\in X\setminus S }[/math].

For [math]\displaystyle{ Y\subseteq X }[/math], denote [math]\displaystyle{ \mathcal{F}_Y=\{S\in\mathcal{F}\mid S\subseteq Y\} }[/math]. Clearly [math]\displaystyle{ \mathcal{F}_Y }[/math] is the restriction of [math]\displaystyle{ \mathcal{F} }[/math] over [math]\displaystyle{ 2^Y\, }[/math].

Definition
A set system [math]\displaystyle{ \mathcal{F}\subseteq 2^X }[/math] is a matroid if it satisfies:
  • (hereditary) if [math]\displaystyle{ T\subseteq S\in\mathcal{F} }[/math] then [math]\displaystyle{ T\in\mathcal{F} }[/math];
  • (matroid property) for every [math]\displaystyle{ Y\subseteq X }[/math], all maximal [math]\displaystyle{ S\in\mathcal{F}_Y }[/math] have the same [math]\displaystyle{ |S| }[/math].

Suppose [math]\displaystyle{ \mathcal{F} }[/math] is a matroid. Some matroid terminologies:

  • Each member set [math]\displaystyle{ S\in\mathcal{F} }[/math] is called an independent set.
  • A maximal independent subset of a set [math]\displaystyle{ Y\subset X }[/math], i.e., a maximal [math]\displaystyle{ S\in\mathcal{F}_Y }[/math], is called a basis of [math]\displaystyle{ Y }[/math].
  • The size of the maximal [math]\displaystyle{ S\in\mathcal{F}_Y }[/math] is called the rank of [math]\displaystyle{ Y }[/math], denoted [math]\displaystyle{ r(Y) }[/math].

Greedy algorithms on weighted matroids

Matroid intersections