组合数学 (Fall 2011)/Pólya's theory of counting: Difference between revisions
Jump to navigation
Jump to search
imported>Etone |
imported>Etone |
||
Line 1: | Line 1: | ||
== Groups == | == Groups == | ||
A group <math>(G,\cdot)</math> is set <math>G</math> along with a binary operator <math>\cdot</math> which satisfies the following axioms: | |||
* closure: <math>\forall g,h\in G, g\cdot h \in G</math>; | |||
* associativity: <math>\forall f,g,h\in G, f\cdot(g\cdot h)=(f\cdot g)\cdot h</math>; | |||
* identity: there exists a special element <math>e\in G</math>, called the '''identity''', such that <math>e\cdot g=g</math> for any <math>g\in G</math>; | |||
* inverse: <math>\froall g\in G</math>, there exists an <math>h\in G</math> such that <math>g\cdot h=e</math>. | |||
=== Permutation groups=== | |||
=== Group action === | === Group action === | ||
== | {{Theorem|Definition (group action)| | ||
:A '''group action''' of a group <math>G</math> on a set <math>X</math> is a binary operator: | |||
::<math>\circ:G\times X\rightarrow X</math> | |||
:satisfying: | |||
:* Associativity: <math>(g\cdot h)\circ x=g\circ (h\circ x)</math> for all <math>g,h\in G</math> and <math>x\in X</math>; | |||
:* Identity: <math>e\circ x=x</math> for all <math>x\in X</math>. | |||
}} | |||
== Burnside's Lemma == | == Burnside's Lemma == |
Revision as of 08:52, 23 September 2011
Groups
A group [math]\displaystyle{ (G,\cdot) }[/math] is set [math]\displaystyle{ G }[/math] along with a binary operator [math]\displaystyle{ \cdot }[/math] which satisfies the following axioms:
- closure: [math]\displaystyle{ \forall g,h\in G, g\cdot h \in G }[/math];
- associativity: [math]\displaystyle{ \forall f,g,h\in G, f\cdot(g\cdot h)=(f\cdot g)\cdot h }[/math];
- identity: there exists a special element [math]\displaystyle{ e\in G }[/math], called the identity, such that [math]\displaystyle{ e\cdot g=g }[/math] for any [math]\displaystyle{ g\in G }[/math];
- inverse: [math]\displaystyle{ \froall g\in G }[/math], there exists an [math]\displaystyle{ h\in G }[/math] such that [math]\displaystyle{ g\cdot h=e }[/math].
Permutation groups
Group action
Definition (group action) - A group action of a group [math]\displaystyle{ G }[/math] on a set [math]\displaystyle{ X }[/math] is a binary operator:
- [math]\displaystyle{ \circ:G\times X\rightarrow X }[/math]
- satisfying:
- Associativity: [math]\displaystyle{ (g\cdot h)\circ x=g\circ (h\circ x) }[/math] for all [math]\displaystyle{ g,h\in G }[/math] and [math]\displaystyle{ x\in X }[/math];
- Identity: [math]\displaystyle{ e\circ x=x }[/math] for all [math]\displaystyle{ x\in X }[/math].
- A group action of a group [math]\displaystyle{ G }[/math] on a set [math]\displaystyle{ X }[/math] is a binary operator:
Burnside's Lemma
Burnside's Lemma - Let [math]\displaystyle{ G }[/math] be a permutation group acting on a set [math]\displaystyle{ X }[/math]. For each [math]\displaystyle{ \pi\in G }[/math], let [math]\displaystyle{ X_\pi=\{x\in X\mid \pi\circ x=x\} }[/math] be the set of elements invariant under action by [math]\displaystyle{ \pi }[/math]. The number of orbits, denoted [math]\displaystyle{ |X/G| }[/math], is
- [math]\displaystyle{ |X/G|=\frac{1}{|G|}\sum_{\pi\in G}|X_{\pi}|. }[/math]
- Let [math]\displaystyle{ G }[/math] be a permutation group acting on a set [math]\displaystyle{ X }[/math]. For each [math]\displaystyle{ \pi\in G }[/math], let [math]\displaystyle{ X_\pi=\{x\in X\mid \pi\circ x=x\} }[/math] be the set of elements invariant under action by [math]\displaystyle{ \pi }[/math]. The number of orbits, denoted [math]\displaystyle{ |X/G| }[/math], is