随机算法 (Fall 2011)/Problem set 4: Difference between revisions

From TCS Wiki
Jump to navigation Jump to search
imported>Etone
No edit summary
imported>Etone
No edit summary
Line 2: Line 2:
Let <math>p</math> and <math>q</math> be two probability distributions over <math>\Omega</math>. Give an explicit construction of a coupling <math>\mu</math> of <math>p</math> and <math>q</math> such that  
Let <math>p</math> and <math>q</math> be two probability distributions over <math>\Omega</math>. Give an explicit construction of a coupling <math>\mu</math> of <math>p</math> and <math>q</math> such that  
::<math>\Pr_{(X,Y)\sim\mu}[X\neq Y]=\|p-q\|_{TV}</math>.
::<math>\Pr_{(X,Y)\sim\mu}[X\neq Y]=\|p-q\|_{TV}</math>.
== Problem 2 ==
Consider the Markov chain of graph coloring
{{Theorem|Markov Chain for Graph Coloring|
:Start with a proper coloring of <math>G(V,E)</math>. At each step:
# Pick a vertex <math>v\in V</math> and a color <math>c\in[q]</math> uniformly at random.
# Change the color of <math>v</math> to <math>c</math> if the resulting coloring is proper; do nothing if otherwise.
}}
Show that the Markov chain is:
# aperiodic;
# irreducible if <math>q\ge \Delta+2</math>;
# with uniform stationary distribution.

Revision as of 06:39, 28 November 2011

Problem 1

Let [math]\displaystyle{ p }[/math] and [math]\displaystyle{ q }[/math] be two probability distributions over [math]\displaystyle{ \Omega }[/math]. Give an explicit construction of a coupling [math]\displaystyle{ \mu }[/math] of [math]\displaystyle{ p }[/math] and [math]\displaystyle{ q }[/math] such that

[math]\displaystyle{ \Pr_{(X,Y)\sim\mu}[X\neq Y]=\|p-q\|_{TV} }[/math].

Problem 2

Consider the Markov chain of graph coloring

Markov Chain for Graph Coloring
Start with a proper coloring of [math]\displaystyle{ G(V,E) }[/math]. At each step:
  1. Pick a vertex [math]\displaystyle{ v\in V }[/math] and a color [math]\displaystyle{ c\in[q] }[/math] uniformly at random.
  2. Change the color of [math]\displaystyle{ v }[/math] to [math]\displaystyle{ c }[/math] if the resulting coloring is proper; do nothing if otherwise.

Show that the Markov chain is:

  1. aperiodic;
  2. irreducible if [math]\displaystyle{ q\ge \Delta+2 }[/math];
  3. with uniform stationary distribution.