随机算法 (Fall 2011)/Problem set 4: Difference between revisions
Jump to navigation
Jump to search
imported>Etone No edit summary |
imported>Etone No edit summary |
||
Line 2: | Line 2: | ||
Let <math>p</math> and <math>q</math> be two probability distributions over <math>\Omega</math>. Give an explicit construction of a coupling <math>\mu</math> of <math>p</math> and <math>q</math> such that | Let <math>p</math> and <math>q</math> be two probability distributions over <math>\Omega</math>. Give an explicit construction of a coupling <math>\mu</math> of <math>p</math> and <math>q</math> such that | ||
::<math>\Pr_{(X,Y)\sim\mu}[X\neq Y]=\|p-q\|_{TV}</math>. | ::<math>\Pr_{(X,Y)\sim\mu}[X\neq Y]=\|p-q\|_{TV}</math>. | ||
== Problem 2 == | |||
Consider the Markov chain of graph coloring | |||
{{Theorem|Markov Chain for Graph Coloring| | |||
:Start with a proper coloring of <math>G(V,E)</math>. At each step: | |||
# Pick a vertex <math>v\in V</math> and a color <math>c\in[q]</math> uniformly at random. | |||
# Change the color of <math>v</math> to <math>c</math> if the resulting coloring is proper; do nothing if otherwise. | |||
}} | |||
Show that the Markov chain is: | |||
# aperiodic; | |||
# irreducible if <math>q\ge \Delta+2</math>; | |||
# with uniform stationary distribution. |
Revision as of 06:39, 28 November 2011
Problem 1
Let [math]\displaystyle{ p }[/math] and [math]\displaystyle{ q }[/math] be two probability distributions over [math]\displaystyle{ \Omega }[/math]. Give an explicit construction of a coupling [math]\displaystyle{ \mu }[/math] of [math]\displaystyle{ p }[/math] and [math]\displaystyle{ q }[/math] such that
- [math]\displaystyle{ \Pr_{(X,Y)\sim\mu}[X\neq Y]=\|p-q\|_{TV} }[/math].
Problem 2
Consider the Markov chain of graph coloring
Markov Chain for Graph Coloring - Start with a proper coloring of [math]\displaystyle{ G(V,E) }[/math]. At each step:
- Pick a vertex [math]\displaystyle{ v\in V }[/math] and a color [math]\displaystyle{ c\in[q] }[/math] uniformly at random.
- Change the color of [math]\displaystyle{ v }[/math] to [math]\displaystyle{ c }[/math] if the resulting coloring is proper; do nothing if otherwise.
Show that the Markov chain is:
- aperiodic;
- irreducible if [math]\displaystyle{ q\ge \Delta+2 }[/math];
- with uniform stationary distribution.