Coloring decay: Difference between revisions

From TCS Wiki
Jump to navigation Jump to search
imported>Etone
imported>Etone
No edit summary
Line 9: Line 9:
:<math>
:<math>
\begin{align}
\begin{align}
\frac{\partial f(x,y)}{\partial x}&=-\frac{dqx^{d-1}y^d}{(x^d+qy^d)^2}\\
\frac{\partial f(x,y)}{\partial x}&=-\frac{dqx^{d-1}y^d}{(x^d+qy^d)^2}=-f(x,y)(1-f(x,y))\frac{d}{x}\\
\frac{\partial f(x,y)}{\partial y}&=\frac{dqx^{d}y^{d-1}}{(x^d+qy^d)^2}
\frac{\partial f(x,y)}{\partial y}&=\frac{dqx^{d}y^{d-1}}{(x^d+qy^d)^2}=f(x,y)(1-f(x,y))\frac{d}{y}
\end{align}</math>
\end{align}</math>
:at the fixed point <math>\frac{\partial f(\hat{x},\hat{y})}{\partial x}=-\frac{d}{q+1}</math> and <math>\frac{\partial f(\hat{x},\hat{y})}{\partial y}=\frac{d}{q+1}</math>.
:at the fixed point <math>\frac{\partial f(\hat{x},\hat{y})}{\partial x}=-\frac{d}{q+1}</math> and <math>\frac{\partial f(\hat{x},\hat{y})}{\partial y}=\frac{d}{q+1}</math>.
* ratio:
* ratio:
:<math>
:<math>
\alpha(x,y)=\left[-\frac{\partial f(x,y)}{\partial x}\frac{1}{\Phi(x)}+\frac{\partial f(x,y)}{\partial y}\frac{1}{\Phi(y)}\right]\Phi\left(f(x,y)\right)
\begin{align}
\alpha(x,y)
&=\left[-\frac{\partial f(x,y)}{\partial x}\frac{1}{\Phi(x)}+\frac{\partial f(x,y)}{\partial y}\frac{1}{\Phi(y)}\right]\Phi\left(f(x,y)\right)\\
&=\alpha_1(x,y)+\alpha_2(x,y)
\end{align}
</math>
where
:<math>
\begin{align}
\alpha_1(x,y)
&=
-\frac{\partial f(x,y)}{\partial x}\frac{\Phi\left(f(x,y)\right)}{\Phi(x)}\\
\alpha_2(x,y)
&=
\frac{\partial f(x,y)}{\partial y}\frac{\Phi\left(f(x,y)\right)}{\Phi(y)}
\end{align}
</math>
</math>
* uniqueness:
* uniqueness:
Line 44: Line 59:
&=
&=
-\frac{\partial^2 f(\hat{x},\hat{y})}{\partial x\partial y}+\frac{\partial^2 f(\hat{x},\hat{y})}{\partial y^2}.
-\frac{\partial^2 f(\hat{x},\hat{y})}{\partial x\partial y}+\frac{\partial^2 f(\hat{x},\hat{y})}{\partial y^2}.
\end{align}
</math>
==Potential==
The recursion and derivatives are:
:<math>
\begin{align}
f
&=
f(x,y)
=\frac{qy^d}{x^d+qy^d}\\
f_x
&=
\frac{\partial f}{\partial x}
=-f(1-f)\frac{d}{x}\\
f_y
&=
\frac{\partial f}{\partial y}
=f(1-f)\frac{d}{y}.
\end{align}
</math>
Then
:<math>
\begin{align}
\frac{f_{x^2}}{f_x}
&=
\frac{f_x}{f}-\frac{f_x}{1-f}-\frac{1}{x}\\
\frac{f_{xy}}{f_x}
&=
\frac{f_y}{f}-\frac{f_y}{1-f}\\
\frac{f_{xy}}{f_y}
&=
\frac{f_x}{f}-\frac{f_x}{1-f}\\
\frac{f_{y^2}}{f_y}
&=
\frac{f_y}{f}-\frac{f_y}{1-f}-\frac{1}{y}
\end{align}
</math>
Recall that
:<math>
\begin{align}
\alpha_1(x,y)
&=
-f_x\cdot\frac{\Phi\left(f\right)}{\Phi(x)},\\
\alpha_2(x,y)
&=
f_y\cdot\frac{\Phi\left(f\right)}{\Phi(y)}.
\end{align}
</math>
Then
:<math>
\begin{align}
\frac{\partial\alpha_1(x,y)}{\partial x}
&=
\alpha_1(x,y)\left[\frac{f_{x^2}}{f_x}+\frac{\Phi'(f)}{\Phi(f)}f_x-\frac{\Phi'(x)}{\Phi(x)}\right]
&=
-f_x\cdot\frac{\Phi\left(f\right)}{\Phi(x)}\left[\frac{f_{x^2}}{f_x}+\frac{\Phi'(f)}{\Phi(f)}f_x-\frac{\Phi'(x)}{\Phi(x)}\right]
\end{align}
\end{align}
</math>
</math>

Revision as of 05:17, 4 December 2012

Recursion

[math]\displaystyle{ q+1 }[/math] color, [math]\displaystyle{ d }[/math]-degree

  • recursion:
[math]\displaystyle{ f(x,y)=\frac{qy^d}{x^d+qy^d} }[/math]
  • fixed point:
[math]\displaystyle{ \hat{x}=\hat{y}=\frac{q}{q+1} }[/math]
  • partials:
[math]\displaystyle{ \begin{align} \frac{\partial f(x,y)}{\partial x}&=-\frac{dqx^{d-1}y^d}{(x^d+qy^d)^2}=-f(x,y)(1-f(x,y))\frac{d}{x}\\ \frac{\partial f(x,y)}{\partial y}&=\frac{dqx^{d}y^{d-1}}{(x^d+qy^d)^2}=f(x,y)(1-f(x,y))\frac{d}{y} \end{align} }[/math]
at the fixed point [math]\displaystyle{ \frac{\partial f(\hat{x},\hat{y})}{\partial x}=-\frac{d}{q+1} }[/math] and [math]\displaystyle{ \frac{\partial f(\hat{x},\hat{y})}{\partial y}=\frac{d}{q+1} }[/math].
  • ratio:
[math]\displaystyle{ \begin{align} \alpha(x,y) &=\left[-\frac{\partial f(x,y)}{\partial x}\frac{1}{\Phi(x)}+\frac{\partial f(x,y)}{\partial y}\frac{1}{\Phi(y)}\right]\Phi\left(f(x,y)\right)\\ &=\alpha_1(x,y)+\alpha_2(x,y) \end{align} }[/math]

where

[math]\displaystyle{ \begin{align} \alpha_1(x,y) &= -\frac{\partial f(x,y)}{\partial x}\frac{\Phi\left(f(x,y)\right)}{\Phi(x)}\\ \alpha_2(x,y) &= \frac{\partial f(x,y)}{\partial y}\frac{\Phi\left(f(x,y)\right)}{\Phi(y)} \end{align} }[/math]
  • uniqueness:
at the fixed point [math]\displaystyle{ \hat{x}=\hat{y}=\frac{q}{q+1} }[/math], [math]\displaystyle{ \alpha(\hat{x},\hat{y})=\frac{2d}{q+1} }[/math]. The critical boundary of uniqueness is [math]\displaystyle{ 2d=q+1 }[/math].

Cancelation

Let the system be right at the critical boundary, i.e. [math]\displaystyle{ 2d=q+1 }[/math]. Then [math]\displaystyle{ \alpha(\hat{x},\hat{y})=1 }[/math].

[math]\displaystyle{ \begin{align} \left.\frac{\partial\alpha(x,y)}{\partial x}\right|_{x=y=\frac{q}{q+1}} &= \left.\left[-\frac{\partial^2 f(x,y)}{\partial x^2}\frac{1}{\Phi(x)}+\frac{\partial f(x,y)}{\partial x}\frac{\Phi'(x)}{(\Phi(x))^2}+\frac{\partial^2 f(x,y)}{\partial y\partial x}\frac{1}{\Phi(y)}\right]\Phi(f(x,y))\right|_{x=y=\frac{q}{q+1}}\\ &\quad\,\,+\left.\left[-\frac{\partial f(x,y)}{\partial x}\frac{1}{\Phi(x)}+\frac{\partial f(x,y)}{\partial y}\frac{1}{\Phi(y)}\right]\Phi'\left(f(x,y)\right)\frac{\partial f(x,y)}{\partial x}\right|_{x=y=\frac{q}{q+1}}\\ &= -\frac{\partial^2 f(\hat{x},\hat{y})}{\partial x^2}+\frac{\partial^2 f(\hat{x},\hat{y})}{\partial y\partial x}-\frac{\Phi'(\hat{x})}{\Phi(\hat{x})}. \end{align} }[/math]

However,

[math]\displaystyle{ \begin{align} \left.\frac{\partial\alpha(x,y)}{\partial y}\right|_{x=y=\frac{q}{q+1}} &= \left.\left[-\frac{\partial^2 f(x,y)}{\partial x\partial y}\frac{1}{\Phi(x)}+\frac{\partial^2 f(x,y)}{\partial y^2}\frac{1}{\Phi(y)}-\frac{\partial f(x,y)}{\partial y}\frac{\Phi'(y)}{(\Phi(y))^2}\right]\Phi(f(x,y))\right|_{x=y=\frac{q}{q+1}}\\ &\quad\,\,+\left.\left[-\frac{\partial f(x,y)}{\partial x}\frac{1}{\Phi(x)}+\frac{\partial f(x,y)}{\partial y}\frac{1}{\Phi(y)}\right]\Phi'\left(f(x,y)\right)\frac{\partial f(x,y)}{\partial y}\right|_{x=y=\frac{q}{q+1}}\\ &= \left[-\frac{\partial^2 f(\hat{x},\hat{y})}{\partial x\partial y}\frac{1}{\Phi(\hat{x})}+\frac{\partial^2 f(\hat{x},\hat{y})}{\partial y^2}\frac{1}{\Phi(\hat{x})}-\frac{1}{2}\frac{\Phi'(\hat{x})}{(\Phi(\hat{x}))^2}\right]\Phi(\hat{x}) +\left[\frac{1}{2}\frac{1}{\Phi(\hat{x})}+\frac{1}{2}\frac{1}{\Phi(\hat{x})}\right]\frac{\Phi'(\hat{x})}{2}\\ &= -\frac{\partial^2 f(\hat{x},\hat{y})}{\partial x\partial y}+\frac{\partial^2 f(\hat{x},\hat{y})}{\partial y^2}. \end{align} }[/math]

Potential

The recursion and derivatives are:

[math]\displaystyle{ \begin{align} f &= f(x,y) =\frac{qy^d}{x^d+qy^d}\\ f_x &= \frac{\partial f}{\partial x} =-f(1-f)\frac{d}{x}\\ f_y &= \frac{\partial f}{\partial y} =f(1-f)\frac{d}{y}. \end{align} }[/math]

Then

[math]\displaystyle{ \begin{align} \frac{f_{x^2}}{f_x} &= \frac{f_x}{f}-\frac{f_x}{1-f}-\frac{1}{x}\\ \frac{f_{xy}}{f_x} &= \frac{f_y}{f}-\frac{f_y}{1-f}\\ \frac{f_{xy}}{f_y} &= \frac{f_x}{f}-\frac{f_x}{1-f}\\ \frac{f_{y^2}}{f_y} &= \frac{f_y}{f}-\frac{f_y}{1-f}-\frac{1}{y} \end{align} }[/math]

Recall that

[math]\displaystyle{ \begin{align} \alpha_1(x,y) &= -f_x\cdot\frac{\Phi\left(f\right)}{\Phi(x)},\\ \alpha_2(x,y) &= f_y\cdot\frac{\Phi\left(f\right)}{\Phi(y)}. \end{align} }[/math]

Then

[math]\displaystyle{ \begin{align} \frac{\partial\alpha_1(x,y)}{\partial x} &= \alpha_1(x,y)\left[\frac{f_{x^2}}{f_x}+\frac{\Phi'(f)}{\Phi(f)}f_x-\frac{\Phi'(x)}{\Phi(x)}\right] &= -f_x\cdot\frac{\Phi\left(f\right)}{\Phi(x)}\left[\frac{f_{x^2}}{f_x}+\frac{\Phi'(f)}{\Phi(f)}f_x-\frac{\Phi'(x)}{\Phi(x)}\right] \end{align} }[/math]