Randomized Algorithms (Spring 2010)/Introduction: Difference between revisions

From TCS Wiki
Jump to navigation Jump to search
imported>WikiSysop
No edit summary
imported>WikiSysop
No edit summary
Line 1: Line 1:
== Fooling an adversary ==
== Randomized Quicksort ==


== Being oblivious (yet being powerful) ==
For an input set S with an arbitrary order, the [http://en.wikipedia.org/wiki/Quicksort Quicksort] algorithm sorts <math>S</math> as described in following psuedocode:
* if <math>|S|>1</math> do:
** pick an element <math>x</math> from  <math>S</math> as the ''pivot'';
** partition <math>S</math> into <math>S_1</math>, <math>\{x\}</math>, and <math>S_2</math>, where all elements in <math>S_1</math> are smaller than <math>x</math> and all elements in <math>S_2</math> are  larger than <math>x</math>;
** recursively sort <math>S_1</math> and <math>S_2</math>;


== Symmetry breaking ==
Let us measure the time complexity of this sorting algorithm by the '''number of comparisons'''. 


== Random sampling ==
For the '''deterministic''' quicksort algorithm, the pivot element is chosen deterministically (usually the first one in the sequence <math>S</math>). This will make the worst-case time complexity <math>\Omega(n^2)</math>, which means there exists a bad case <math>S</math>, sorting which will cost us <math>\Omega(n^2)</math> comparisons, ''every time''!


== Fast reaching a desirable state ==
It is just so unfair to have an unbeatable case for this brilliant algorithm. So we tweak the algorithm a little bit:
=== Algorithm: RandQSort ===
* if <math>|S|>1</math> do:
** ''uniformly'' pick a ''random'' element <math>x</math> from  <math>S</math> as the pivot;
** partition <math>S</math> into <math>S_1</math>, <math>\{x\}</math>, and <math>S_2</math>, where all elements in <math>S_1</math> are smaller than <math>x</math> and all elements in <math>S_2</math> are  larger than <math>x</math>;
** recursively sort <math>S_1</math> and <math>S_2</math>;


== Fingerprinting ==
=== Analysis of RandQSort ===
Suppose that <math>S=\{a_1,a_2,\ldots,a_n\}</math>, where <math>a_1<a_2<\ldots<a_n</math>.
Let <math>X_{ij}\in\{0,1\}</math> be the random variable which indicates whether <math>a_i</math> and <math>a_j</math> are compared during the execution of RandQSort. That is:


== Probabilistic proofs of existence ==
<math>
\begin{align}
X_{ij} &=
\begin{cases}
1 & a_i\mbox{ and }a_j\mbox{ are compared}\\
0 & \mbox{otherwise}
\end{cases}.
\end{align}
</math>
==== Observation 1:  the ====
 
 
 
 
 
 
 
* Fooling an adversary
 
* Being oblivious (yet being powerful)
 
* Symmetry breaking
 
* Random sampling
 
* Fast reaching a desirable state
 
* Fingerprinting
 
* Probabilistic proofs of existence

Revision as of 16:13, 31 December 2009

Randomized Quicksort

For an input set S with an arbitrary order, the Quicksort algorithm sorts [math]\displaystyle{ S }[/math] as described in following psuedocode:

  • if [math]\displaystyle{ |S|\gt 1 }[/math] do:
    • pick an element [math]\displaystyle{ x }[/math] from [math]\displaystyle{ S }[/math] as the pivot;
    • partition [math]\displaystyle{ S }[/math] into [math]\displaystyle{ S_1 }[/math], [math]\displaystyle{ \{x\} }[/math], and [math]\displaystyle{ S_2 }[/math], where all elements in [math]\displaystyle{ S_1 }[/math] are smaller than [math]\displaystyle{ x }[/math] and all elements in [math]\displaystyle{ S_2 }[/math] are larger than [math]\displaystyle{ x }[/math];
    • recursively sort [math]\displaystyle{ S_1 }[/math] and [math]\displaystyle{ S_2 }[/math];

Let us measure the time complexity of this sorting algorithm by the number of comparisons.

For the deterministic quicksort algorithm, the pivot element is chosen deterministically (usually the first one in the sequence [math]\displaystyle{ S }[/math]). This will make the worst-case time complexity [math]\displaystyle{ \Omega(n^2) }[/math], which means there exists a bad case [math]\displaystyle{ S }[/math], sorting which will cost us [math]\displaystyle{ \Omega(n^2) }[/math] comparisons, every time!

It is just so unfair to have an unbeatable case for this brilliant algorithm. So we tweak the algorithm a little bit:

Algorithm: RandQSort

  • if [math]\displaystyle{ |S|\gt 1 }[/math] do:
    • uniformly pick a random element [math]\displaystyle{ x }[/math] from [math]\displaystyle{ S }[/math] as the pivot;
    • partition [math]\displaystyle{ S }[/math] into [math]\displaystyle{ S_1 }[/math], [math]\displaystyle{ \{x\} }[/math], and [math]\displaystyle{ S_2 }[/math], where all elements in [math]\displaystyle{ S_1 }[/math] are smaller than [math]\displaystyle{ x }[/math] and all elements in [math]\displaystyle{ S_2 }[/math] are larger than [math]\displaystyle{ x }[/math];
    • recursively sort [math]\displaystyle{ S_1 }[/math] and [math]\displaystyle{ S_2 }[/math];

Analysis of RandQSort

Suppose that [math]\displaystyle{ S=\{a_1,a_2,\ldots,a_n\} }[/math], where [math]\displaystyle{ a_1\lt a_2\lt \ldots\lt a_n }[/math]. Let [math]\displaystyle{ X_{ij}\in\{0,1\} }[/math] be the random variable which indicates whether [math]\displaystyle{ a_i }[/math] and [math]\displaystyle{ a_j }[/math] are compared during the execution of RandQSort. That is:

[math]\displaystyle{ \begin{align} X_{ij} &= \begin{cases} 1 & a_i\mbox{ and }a_j\mbox{ are compared}\\ 0 & \mbox{otherwise} \end{cases}. \end{align} }[/math]

Observation 1: the

  • Fooling an adversary
  • Being oblivious (yet being powerful)
  • Symmetry breaking
  • Random sampling
  • Fast reaching a desirable state
  • Fingerprinting
  • Probabilistic proofs of existence