随机算法 (Spring 2014)/Problem Set 2: Difference between revisions
Jump to navigation
Jump to search
imported>Etone Created page with "== Problem 1 == (Due to D.R. Karger and R. Motwani.) # Let <math>S,T</math> be two disjoint subsets of a universe <math>U</math> such that <math>|S|=|T|=n</math>. Suppose we sel…" |
imported>Etone No edit summary |
||
Line 4: | Line 4: | ||
# Let <math>S,T</math> be two disjoint subsets of a universe <math>U</math> such that <math>|S|=|T|=n</math>. Suppose we select a random set <math>R\subseteq U</math> by independently sampling each element of <math>U</math> with probability <math>p</math>. We say that the random sample <math>R</math> is <i>good</i> if the following two conditions hold: <math>R\cap S=\emptyset</math> and <math>R\cap T\ne\emptyset</math>. Show that for <math>p=1/n</math>, the probability that <math>R</math> is good is larger than some positive constant. | # Let <math>S,T</math> be two disjoint subsets of a universe <math>U</math> such that <math>|S|=|T|=n</math>. Suppose we select a random set <math>R\subseteq U</math> by independently sampling each element of <math>U</math> with probability <math>p</math>. We say that the random sample <math>R</math> is <i>good</i> if the following two conditions hold: <math>R\cap S=\emptyset</math> and <math>R\cap T\ne\emptyset</math>. Show that for <math>p=1/n</math>, the probability that <math>R</math> is good is larger than some positive constant. | ||
# Suppose now that the random set <math>R</math> is chosen by sampling the elements of <math>U</math> with only <i>pairwise</i> independence. Show that for a suitable choice of the value of <math>p</math>, the probability that <math>R</math> is good is larger than some positive constant. | # Suppose now that the random set <math>R</math> is chosen by sampling the elements of <math>U</math> with only <i>pairwise</i> independence. Show that for a suitable choice of the value of <math>p</math>, the probability that <math>R</math> is good is larger than some positive constant. | ||
== Problem 2 == | |||
Let <math>X_1,X_2,\dots,X_n</math> be independent geometrically distributed random variables each having expectation 2 (each of the <math>X_i</math> is an independent experiment counting the number of tosses of an unbiased coin up to and including the first HEADS). Let <math>X=\sum_{i=1}^nX_i</math> and <math>\delta</math> be a positive real constant. Derive the best upper bound you can on <math>\Pr[X>(1+\delta)(2n)]</math>. |
Revision as of 08:44, 24 March 2014
Problem 1
(Due to D.R. Karger and R. Motwani.)
- Let [math]\displaystyle{ S,T }[/math] be two disjoint subsets of a universe [math]\displaystyle{ U }[/math] such that [math]\displaystyle{ |S|=|T|=n }[/math]. Suppose we select a random set [math]\displaystyle{ R\subseteq U }[/math] by independently sampling each element of [math]\displaystyle{ U }[/math] with probability [math]\displaystyle{ p }[/math]. We say that the random sample [math]\displaystyle{ R }[/math] is good if the following two conditions hold: [math]\displaystyle{ R\cap S=\emptyset }[/math] and [math]\displaystyle{ R\cap T\ne\emptyset }[/math]. Show that for [math]\displaystyle{ p=1/n }[/math], the probability that [math]\displaystyle{ R }[/math] is good is larger than some positive constant.
- Suppose now that the random set [math]\displaystyle{ R }[/math] is chosen by sampling the elements of [math]\displaystyle{ U }[/math] with only pairwise independence. Show that for a suitable choice of the value of [math]\displaystyle{ p }[/math], the probability that [math]\displaystyle{ R }[/math] is good is larger than some positive constant.
Problem 2
Let [math]\displaystyle{ X_1,X_2,\dots,X_n }[/math] be independent geometrically distributed random variables each having expectation 2 (each of the [math]\displaystyle{ X_i }[/math] is an independent experiment counting the number of tosses of an unbiased coin up to and including the first HEADS). Let [math]\displaystyle{ X=\sum_{i=1}^nX_i }[/math] and [math]\displaystyle{ \delta }[/math] be a positive real constant. Derive the best upper bound you can on [math]\displaystyle{ \Pr[X\gt (1+\delta)(2n)] }[/math].