组合数学 (Spring 2014)/Problem Set 3: Difference between revisions
imported>Etone No edit summary |
imported>Etone No edit summary |
||
Line 1: | Line 1: | ||
==Problem 1 == | ==Problem 1 == | ||
Recall that <math>\chi(G)</math> is the chromatic number of graph <math>G</math>. | |||
Prove: | |||
* Any graph <math>G</math> must have at least <math>{\chi(G)\choose 2}</math> edges. | |||
* For any two graphs <math>G(V,E)</math> and <math>H(V,F)</math>. Prove that <math>\chi(G\cup H)\le\chi(G)\chi(H)</math>. | |||
==Problem 2 == | |||
(Erdős-Lovász 1975) | (Erdős-Lovász 1975) | ||
Revision as of 08:12, 14 May 2014
Problem 1
Recall that [math]\displaystyle{ \chi(G) }[/math] is the chromatic number of graph [math]\displaystyle{ G }[/math].
Prove:
- Any graph [math]\displaystyle{ G }[/math] must have at least [math]\displaystyle{ {\chi(G)\choose 2} }[/math] edges.
- For any two graphs [math]\displaystyle{ G(V,E) }[/math] and [math]\displaystyle{ H(V,F) }[/math]. Prove that [math]\displaystyle{ \chi(G\cup H)\le\chi(G)\chi(H) }[/math].
Problem 2
(Erdős-Lovász 1975)
Let [math]\displaystyle{ \mathcal{H}\subseteq{V\choose k} }[/math] be a [math]\displaystyle{ k }[/math]-uniform [math]\displaystyle{ k }[/math]-regular hypergraph, so that for each [math]\displaystyle{ v\in V }[/math] there are exact [math]\displaystyle{ k }[/math] many [math]\displaystyle{ S\in\mathcal{H} }[/math] having [math]\displaystyle{ v\in S }[/math].
Use the probabilistic method to prove: For [math]\displaystyle{ k\ge 10 }[/math], there is a two coloring [math]\displaystyle{ f:V\rightarrow\{0,1\} }[/math] such that [math]\displaystyle{ \mathcal{H} }[/math] does not contain any monochromatic hyperedge [math]\displaystyle{ S\in\mathcal{H} }[/math].