随机算法 \ 高级算法 (Fall 2016)/Problem Set 2: Difference between revisions

From TCS Wiki
Jump to navigation Jump to search
imported>Etone
Created page with "每道题目的解答都要有<font color="red" >完整的解题过程</font>。中英文不限。 == Problem 1== Consider the following optimization problem. *'''Instance''..."
 
imported>Etone
Line 4: Line 4:
== Problem 1==
== Problem 1==
Consider the following optimization problem.
Consider the following optimization problem.
*'''Instance''': <math>n</math> positive integers <math>x_1<x_2<\cdots <x_n</math>.
:'''Instance''': <math>n</math> positive integers <math>x_1<x_2<\cdots <x_n</math>.
*Find two ''disjoint'' nonempty subsets <math>A,B\subset\{1,2,\ldots,n\}</math> with <math>\sum_{i\in A}x_i\ge \sum_{i\in B}x_i</math>, such that the ratio <math>\frac{\sum_{i\in A}x_i}{\sum_{i\in B}x_i}</math> is minimized.
:Find two ''disjoint'' nonempty subsets <math>A,B\subset\{1,2,\ldots,n\}</math> with <math>\sum_{i\in A}x_i\ge \sum_{i\in B}x_i</math>, such that the ratio <math>\frac{\sum_{i\in A}x_i}{\sum_{i\in B}x_i}</math> is minimized.
Give a pseudo-polynomial time algorithm for the problem, and then give an FPTAS for the problem based on the pseudo-polynomial time algorithm.

Revision as of 13:24, 20 October 2016

每道题目的解答都要有完整的解题过程。中英文不限。


Problem 1

Consider the following optimization problem.

Instance: [math]\displaystyle{ n }[/math] positive integers [math]\displaystyle{ x_1\lt x_2\lt \cdots \lt x_n }[/math].
Find two disjoint nonempty subsets [math]\displaystyle{ A,B\subset\{1,2,\ldots,n\} }[/math] with [math]\displaystyle{ \sum_{i\in A}x_i\ge \sum_{i\in B}x_i }[/math], such that the ratio [math]\displaystyle{ \frac{\sum_{i\in A}x_i}{\sum_{i\in B}x_i} }[/math] is minimized.

Give a pseudo-polynomial time algorithm for the problem, and then give an FPTAS for the problem based on the pseudo-polynomial time algorithm.