随机算法 \ 高级算法 (Fall 2016)/Problem Set 2: Difference between revisions
Jump to navigation
Jump to search
imported>Etone |
imported>Etone No edit summary |
||
Line 7: | Line 7: | ||
:Find two ''disjoint'' nonempty subsets <math>A,B\subset\{1,2,\ldots,n\}</math> with <math>\sum_{i\in A}x_i\ge \sum_{i\in B}x_i</math>, such that the ratio <math>\frac{\sum_{i\in A}x_i}{\sum_{i\in B}x_i}</math> is minimized. | :Find two ''disjoint'' nonempty subsets <math>A,B\subset\{1,2,\ldots,n\}</math> with <math>\sum_{i\in A}x_i\ge \sum_{i\in B}x_i</math>, such that the ratio <math>\frac{\sum_{i\in A}x_i}{\sum_{i\in B}x_i}</math> is minimized. | ||
Give a pseudo-polynomial time algorithm for the problem, and then give an FPTAS for the problem based on the pseudo-polynomial time algorithm. | Give a pseudo-polynomial time algorithm for the problem, and then give an FPTAS for the problem based on the pseudo-polynomial time algorithm. | ||
== Problem 2== | |||
In the ''maximum directed cut'' (MAX-DICUT) problem, we are given as input a directed graph <math>G(V,E)</math>. The goal is to partition <math>V</math> into disjoint <math>S</math> and <math>T</math> so that the number of edges in <math>E(S,T)=\{(u,v)\in E\mid u\in S, v\in T\}</math> is maximized. The following is the integer program for MAX-DICUT: | |||
:::<math> | |||
\begin{align} | |||
\text{maximize} && \sum_{(u,v)\in E}y_{u,v}\\ | |||
\text{subject to} && y_{u,v} &\le x_u, & \forall (u,v)&\in E,\\ | |||
&& y_{u,v} &\le 1-x_v, & \forall (u,v)&\in E,\\ | |||
&& x_v &\in\{0,1\}, & \forall v&\in V,\\ | |||
&& y_{u,v} &\in\{0,1\}, & \forall (u,v)&\in E. | |||
\end{align} | |||
</math> |
Revision as of 13:46, 20 October 2016
每道题目的解答都要有完整的解题过程。中英文不限。
Problem 1
Consider the following optimization problem.
- Instance: [math]\displaystyle{ n }[/math] positive integers [math]\displaystyle{ x_1\lt x_2\lt \cdots \lt x_n }[/math].
- Find two disjoint nonempty subsets [math]\displaystyle{ A,B\subset\{1,2,\ldots,n\} }[/math] with [math]\displaystyle{ \sum_{i\in A}x_i\ge \sum_{i\in B}x_i }[/math], such that the ratio [math]\displaystyle{ \frac{\sum_{i\in A}x_i}{\sum_{i\in B}x_i} }[/math] is minimized.
Give a pseudo-polynomial time algorithm for the problem, and then give an FPTAS for the problem based on the pseudo-polynomial time algorithm.
Problem 2
In the maximum directed cut (MAX-DICUT) problem, we are given as input a directed graph [math]\displaystyle{ G(V,E) }[/math]. The goal is to partition [math]\displaystyle{ V }[/math] into disjoint [math]\displaystyle{ S }[/math] and [math]\displaystyle{ T }[/math] so that the number of edges in [math]\displaystyle{ E(S,T)=\{(u,v)\in E\mid u\in S, v\in T\} }[/math] is maximized. The following is the integer program for MAX-DICUT:
- [math]\displaystyle{ \begin{align} \text{maximize} && \sum_{(u,v)\in E}y_{u,v}\\ \text{subject to} && y_{u,v} &\le x_u, & \forall (u,v)&\in E,\\ && y_{u,v} &\le 1-x_v, & \forall (u,v)&\in E,\\ && x_v &\in\{0,1\}, & \forall v&\in V,\\ && y_{u,v} &\in\{0,1\}, & \forall (u,v)&\in E. \end{align} }[/math]