高级算法 (Fall 2017)/Finite Field Basics: Difference between revisions
imported>Etone No edit summary |
imported>Etone No edit summary |
||
Line 9: | Line 9: | ||
! rowspan="2"|'''''monoid''''' | ! rowspan="2"|'''''monoid''''' | ||
!'''''semigroup''''' | !'''''semigroup''''' | ||
|1. Addition is '''associative''': <math>\forall x,y,z\in S, (x+y)+z= x+(y+z).</math> | |1. '''Addition''' is '''associative''': <math>\forall x,y,z\in S, (x+y)+z= x+(y+z).</math> | ||
|- | |- | ||
| | | | ||
Line 18: | Line 18: | ||
|- | |- | ||
|colspan="3"| | |colspan="3"| | ||
|4. Addition is '''commutative''': <math>\forall x,y\in S, x+y= y+x.</math> | |4. '''Addition''' is '''commutative''': <math>\forall x,y\in S, x+y= y+x.</math> | ||
|- | |- | ||
|colspan="4" rowspan="3"| | |colspan="4" rowspan="3"| | ||
|5. Multiplication '''distributes''' over addition: <math>\forall x,y,z\in S, x\cdot(y+z)= x\cdot y+x\cdot z</math> and <math>(y+z)\cdot x= y\cdot x+z\cdot x.</math> | |5. Multiplication '''distributes''' over addition: <math>\forall x,y,z\in S, x\cdot(y+z)= x\cdot y+x\cdot z</math> and <math>(y+z)\cdot x= y\cdot x+z\cdot x.</math> | ||
|- | |- | ||
|6. Multiplication is '''associative''': <math>\forall x,y,z\in S, (x\cdot y)\cdot z= x\cdot (y\cdot z).</math> | |6. '''Multiplication''' is '''associative''': <math>\forall x,y,z\in S, (x\cdot y)\cdot z= x\cdot (y\cdot z).</math> | ||
|- | |- | ||
|7. Existence of '''multiplicative identity 1''': <math>\forall x\in S, x\cdot 1= 1\cdot x=x.</math> | |7. Existence of '''multiplicative identity 1''': <math>\forall x\in S, x\cdot 1= 1\cdot x=x.</math> | ||
|- | |- | ||
|colspan="5"| | |colspan="5"| | ||
|8. Multiplication is '''commutative''': <math>\forall x,y\in S, x\cdot y= y\cdot x.</math> | |8. '''Multiplication''' is '''commutative''': <math>\forall x,y\in S, x\cdot y= y\cdot x.</math> | ||
|- | |- | ||
|colspan="6"| | |colspan="6"| |
Revision as of 16:08, 13 September 2017
Field
Let [math]\displaystyle{ S }[/math] be a set, closed under two binary operations [math]\displaystyle{ + }[/math] (addition) and [math]\displaystyle{ \cdot }[/math] (multiplication). It gives us the following algebraic structures if the corresponding set of axioms are satisfied.
field | commutative ring |
ring | abelian group |
group | monoid | semigroup | 1. Addition is associative: [math]\displaystyle{ \forall x,y,z\in S, (x+y)+z= x+(y+z). }[/math] |
---|---|---|---|---|---|---|---|
2. Existence of additive identity 0: [math]\displaystyle{ \forall x\in S, x+0= 0+x=x. }[/math] | |||||||
3. Everyone has an additive inverse: [math]\displaystyle{ \forall x\in S, \exists -x\in S, \text{ s.t. } x+(-x)= (-x)+x=0. }[/math] | |||||||
4. Addition is commutative: [math]\displaystyle{ \forall x,y\in S, x+y= y+x. }[/math] | |||||||
5. Multiplication distributes over addition: [math]\displaystyle{ \forall x,y,z\in S, x\cdot(y+z)= x\cdot y+x\cdot z }[/math] and [math]\displaystyle{ (y+z)\cdot x= y\cdot x+z\cdot x. }[/math] | |||||||
6. Multiplication is associative: [math]\displaystyle{ \forall x,y,z\in S, (x\cdot y)\cdot z= x\cdot (y\cdot z). }[/math] | |||||||
7. Existence of multiplicative identity 1: [math]\displaystyle{ \forall x\in S, x\cdot 1= 1\cdot x=x. }[/math] | |||||||
8. Multiplication is commutative: [math]\displaystyle{ \forall x,y\in S, x\cdot y= y\cdot x. }[/math] | |||||||
9. Every non-zero element has a multiplicative inverse: [math]\displaystyle{ \forall x\in S\setminus\{0\}, \exists x^{-1}\in S, \text{ s.t. } x\cdot x^{-1}= x^{-1}\cdot x=1. }[/math] |
The semigroup, monoid, group and abelian group are given by [math]\displaystyle{ (S,+) }[/math], and the ring, commutative ring, and field are given by [math]\displaystyle{ (S,+,\cdot) }[/math].
Examples:
- Infinite fields: [math]\displaystyle{ \mathbb{Q} }[/math], [math]\displaystyle{ \mathbb{R} }[/math], [math]\displaystyle{ \mathbb{C} }[/math] are fields. The integer set [math]\displaystyle{ \mathbb{Z} }[/math] is a commutative ring but is not a field.
- Finite fields: For any integer [math]\displaystyle{ n\gt 1 }[/math], the modulo ring [math]\displaystyle{ \mathbb{Z}_n=\{0,1,\ldots,n-1\} }[/math] (where addition [math]\displaystyle{ + }[/math] and multiplication [math]\displaystyle{ \cdot }[/math] are defined modulo [math]\displaystyle{ n }[/math]) is a commutative ring. In particular, for prime [math]\displaystyle{ p }[/math], [math]\displaystyle{ \mathbb{Z}_p }[/math] is a field. This can be verified by Fermat's little theorem. Sometimes, [math]\displaystyle{ \mathbb{Z}_p }[/math] as a field is also denoted as [math]\displaystyle{ \mathbb{Z}/p\mathbb{Z} }[/math] or [math]\displaystyle{ \mathsf{GF}(p) }[/math].
A finite field of order [math]\displaystyle{ q }[/math] (which means the size of the finite set [math]\displaystyle{ S }[/math] is [math]\displaystyle{ q }[/math]) is usually written as [math]\displaystyle{ \mathsf{GF}(q) }[/math], called the Galois field of order [math]\displaystyle{ q }[/math].