组合数学 (Fall 2019)/Problem Set 1: Difference between revisions
imported>Haimin No edit summary |
imported>Haimin No edit summary |
||
Line 1: | Line 1: | ||
== | == <font color="red" size=5>Under constructed</font> == | ||
*每道题目的解答都要有<font color="red" size=5>完整的解题过程</font>。中英文不限。 | *每道题目的解答都要有<font color="red" size=5>完整的解题过程</font>。中英文不限。 | ||
== Problem 1 == | == Problem 1 == | ||
Suppose that there are <math>n</math> red balls, and another m balls are distinct and not red. Balls with the same color are indistinguishable. | Suppose that there are <math>n</math> red balls, and another m balls which are distinct and not red. Balls with the same color are indistinguishable. | ||
Determine the number of ways to select <math>r</math> balls from these <math>n+m</math> balls, in each of the following cases: | Determine the number of ways to select <math>r</math> balls from these <math>n+m</math> balls, in each of the following cases: | ||
#<math>r\leq m,r\leq n</math>; | #<math>r\leq m,r\leq n</math>; |
Revision as of 14:00, 16 September 2019
Under constructed
- 每道题目的解答都要有完整的解题过程。中英文不限。
Problem 1
Suppose that there are [math]\displaystyle{ n }[/math] red balls, and another m balls which are distinct and not red. Balls with the same color are indistinguishable. Determine the number of ways to select [math]\displaystyle{ r }[/math] balls from these [math]\displaystyle{ n+m }[/math] balls, in each of the following cases:
- [math]\displaystyle{ r\leq m,r\leq n }[/math];
- [math]\displaystyle{ n\leq r\leq m }[/math];
- [math]\displaystyle{ m\leq r\leq n }[/math].
Problem 2
李雷和韩梅梅竞选学生会主席,韩梅梅获得选票 [math]\displaystyle{ p }[/math] 张,李雷获得选票 [math]\displaystyle{ q }[/math] 张,[math]\displaystyle{ p\gt q }[/math]。我们将总共的 [math]\displaystyle{ p+q }[/math] 张选票一张一张的点数,有多少种选票的排序方式使得在整个点票过程中,韩梅梅的票数一直高于李雷的票数?等价地,假设选票均匀分布的随机排列,以多大概率在整个点票过程中,韩梅梅的票数一直高于李雷的票数。
Problem 3
Find the generating function for the sequence [math]\displaystyle{ (a_r) }[/math] in each of the following cases: [math]\displaystyle{ a_r }[/math] is the number of ways of distributing [math]\displaystyle{ r }[/math] identical objects into:
- 4 distinct boxes;
- 4 distinct boxes so that no box is empty;
- 4 identical boxes;
- 4 identical boxes so that no box is empty.