高级算法 (Fall 2019)/Conditional expectations: Difference between revisions

From TCS Wiki
Jump to navigation Jump to search
imported>Etone
imported>Etone
Line 57: Line 57:
\end{align}</math>
\end{align}</math>
}}
}}
==Examples ==
;coin flips
:A fair coin is flipped for a number of times. Let <math>Z_j\in\{-1,1\}</math> denote the outcome of the <math>j</math>th flip. Let
::<math>X_0=0\quad \mbox{ and } \quad X_i=\sum_{j\le i}Z_j</math>.
:The random variables <math>X_0,X_1,\ldots</math> defines a martingale.
;Proof
:We first observe that <math>\mathbf{E}[X_i\mid X_0,\ldots,X_{i-1}] = \mathbf{E}[X_i\mid X_{i-1}]</math>, which intuitively says that the next number of HEADs depends only on the current number of HEADs. This property is also called the '''Markov property''' in statistic processes.
::<math>
\begin{align}
\mathbf{E}[X_i\mid X_0,\ldots,X_{i-1}]
&= \mathbf{E}[X_i\mid X_{i-1}]\\
&= \mathbf{E}[X_{i-1}+Z_{i}\mid X_{i-1}]\\
&= \mathbf{E}[X_{i-1}\mid X_{i-1}]+\mathbf{E}[Z_{i}\mid X_{i-1}]\\
&= X_{i-1}+\mathbf{E}[Z_{i}\mid X_{i-1}]\\
&= X_{i-1}+\mathbf{E}[Z_{i}] &\quad (\mbox{independence of coin flips})\\
&= X_{i-1}
\end{align}
</math>
;edge exposure in a random graph
:Consider a '''random graph''' <math>G</math> generated as follows. Let <math>[n]</math> be the set of vertices, and let <math>[m]={[n]\choose 2}</math> be the set of all possible edges. For convenience, we enumerate these potential edges by <math>e_1,\ldots, e_m</math>. For each potential edge <math>e_j</math>, we independently flip a fair coin to decide whether the edge <math>e_j</math> appears in <math>G</math>. Let <math>I_j</math> be the random variable that indicates whether <math>e_j\in G</math>. We are interested in some graph-theoretical parameter, say [http://mathworld.wolfram.com/ChromaticNumber.html chromatic number], of the random graph <math>G</math>. Let <math>\chi(G)</math> be the chromatic number of <math>G</math>. Let <math>X_0=\mathbf{E}[\chi(G)]</math>, and for each <math>i\ge 1</math>, let <math>X_i=\mathbf{E}[\chi(G)\mid I_1,\ldots,I_{i}]</math>, namely, the expected chromatic number of the random graph after fixing the first <math>i</math> edges. This process is called edges exposure of a random graph, as we "exposing" the edges one by one in a random graph.
It is nontrivial to formally verify that the edge exposure sequence for a random graph is a martingale. However, we will later see that this construction can be put into a more general context.
==Generalization ==


The martingale can be generalized to be with respect to another sequence of random variables.
The martingale can be generalized to be with respect to another sequence of random variables.

Revision as of 07:20, 14 October 2019

Conditional Expectations

The conditional expectation of a random variable [math]\displaystyle{ Y }[/math] with respect to an event [math]\displaystyle{ \mathcal{E} }[/math] is defined by

[math]\displaystyle{ \mathbf{E}[Y\mid \mathcal{E}]=\sum_{y}y\Pr[Y=y\mid\mathcal{E}]. }[/math]

In particular, if the event [math]\displaystyle{ \mathcal{E} }[/math] is [math]\displaystyle{ X=a }[/math], the conditional expectation

[math]\displaystyle{ \mathbf{E}[Y\mid X=a] }[/math]

defines a function

[math]\displaystyle{ f(a)=\mathbf{E}[Y\mid X=a]. }[/math]

Thus, [math]\displaystyle{ \mathbf{E}[Y\mid X] }[/math] can be regarded as a random variable [math]\displaystyle{ f(X) }[/math].

Example
Suppose that we uniformly sample a human from all human beings. Let [math]\displaystyle{ Y }[/math] be his/her height, and let [math]\displaystyle{ X }[/math] be the country where he/she is from. For any country [math]\displaystyle{ a }[/math], [math]\displaystyle{ \mathbf{E}[Y\mid X=a] }[/math] gives the average height of that country. And [math]\displaystyle{ \mathbf{E}[Y\mid X] }[/math] is the random variable which can be defined in either ways:
  • We choose a human uniformly at random from all human beings, and [math]\displaystyle{ \mathbf{E}[Y\mid X] }[/math] is the average height of the country where he/she comes from.
  • We choose a country at random with a probability proportional to its population, and [math]\displaystyle{ \mathbf{E}[Y\mid X] }[/math] is the average height of the chosen country.

The following proposition states some fundamental facts about conditional expectation.

Proposition (fundamental facts about conditional expectation)
Let [math]\displaystyle{ X,Y }[/math] and [math]\displaystyle{ Z }[/math] be arbitrary random variables. Let [math]\displaystyle{ f }[/math] and [math]\displaystyle{ g }[/math] be arbitrary functions. Then
  1. [math]\displaystyle{ \mathbf{E}[X]=\mathbf{E}[\mathbf{E}[X\mid Y]] }[/math].
  2. [math]\displaystyle{ \mathbf{E}[X\mid Z]=\mathbf{E}[\mathbf{E}[X\mid Y,Z]\mid Z] }[/math].
  3. [math]\displaystyle{ \mathbf{E}[\mathbf{E}[f(X)g(X,Y)\mid X]]=\mathbf{E}[f(X)\cdot \mathbf{E}[g(X,Y)\mid X]] }[/math].

The proposition can be formally verified by computing these expectations. Although these equations look formal, the intuitive interpretations to them are very clear.

The first equation:

[math]\displaystyle{ \mathbf{E}[X]=\mathbf{E}[\mathbf{E}[X\mid Y]] }[/math]

says that there are two ways to compute an average. Suppose again that [math]\displaystyle{ X }[/math] is the height of a uniform random human and [math]\displaystyle{ Y }[/math] is the country where he/she is from. There are two ways to compute the average human height: one is to directly average over the heights of all humans; the other is that first compute the average height for each country, and then average over these heights weighted by the populations of the countries.

The second equation:

[math]\displaystyle{ \mathbf{E}[X\mid Z]=\mathbf{E}[\mathbf{E}[X\mid Y,Z]\mid Z] }[/math]

is the same as the first one, restricted to a particular subspace. As the previous example, inaddition to the height [math]\displaystyle{ X }[/math] and the country [math]\displaystyle{ Y }[/math], let [math]\displaystyle{ Z }[/math] be the gender of the individual. Thus, [math]\displaystyle{ \mathbf{E}[X\mid Z] }[/math] is the average height of a human being of a given sex. Again, this can be computed either directly or on a country-by-country basis.

The third equation:

[math]\displaystyle{ \mathbf{E}[\mathbf{E}[f(X)g(X,Y)\mid X]]=\mathbf{E}[f(X)\cdot \mathbf{E}[g(X,Y)\mid X]] }[/math].

looks obscure at the first glance, especially when considering that [math]\displaystyle{ X }[/math] and [math]\displaystyle{ Y }[/math] are not necessarily independent. Nevertheless, the equation follows the simple fact that conditioning on any [math]\displaystyle{ X=a }[/math], the function value [math]\displaystyle{ f(X)=f(a) }[/math] becomes a constant, thus can be safely taken outside the expectation due to the linearity of expectation. For any value [math]\displaystyle{ X=a }[/math],

[math]\displaystyle{ \mathbf{E}[f(X)g(X,Y)\mid X=a]=\mathbf{E}[f(a)g(X,Y)\mid X=a]=f(a)\cdot \mathbf{E}[g(X,Y)\mid X=a]. }[/math]

The proposition holds in more general cases when [math]\displaystyle{ X, Y }[/math] and [math]\displaystyle{ Z }[/math] are a sequence of random variables.

Martingales

A martingale is a random sequence [math]\displaystyle{ X_0,X_1,\ldots }[/math] satisfying the following so-called martingale property.

Definition (martingale)
A sequence of random variables [math]\displaystyle{ X_0,X_1,\ldots }[/math] is a martingale if for all [math]\displaystyle{ i\gt 0 }[/math],
[math]\displaystyle{ \begin{align} \mathbf{E}[X_{i}\mid X_0,\ldots,X_{i-1}]=X_{i-1}. \end{align} }[/math]

Examples

coin flips
A fair coin is flipped for a number of times. Let [math]\displaystyle{ Z_j\in\{-1,1\} }[/math] denote the outcome of the [math]\displaystyle{ j }[/math]th flip. Let
[math]\displaystyle{ X_0=0\quad \mbox{ and } \quad X_i=\sum_{j\le i}Z_j }[/math].
The random variables [math]\displaystyle{ X_0,X_1,\ldots }[/math] defines a martingale.
Proof
We first observe that [math]\displaystyle{ \mathbf{E}[X_i\mid X_0,\ldots,X_{i-1}] = \mathbf{E}[X_i\mid X_{i-1}] }[/math], which intuitively says that the next number of HEADs depends only on the current number of HEADs. This property is also called the Markov property in statistic processes.
[math]\displaystyle{ \begin{align} \mathbf{E}[X_i\mid X_0,\ldots,X_{i-1}] &= \mathbf{E}[X_i\mid X_{i-1}]\\ &= \mathbf{E}[X_{i-1}+Z_{i}\mid X_{i-1}]\\ &= \mathbf{E}[X_{i-1}\mid X_{i-1}]+\mathbf{E}[Z_{i}\mid X_{i-1}]\\ &= X_{i-1}+\mathbf{E}[Z_{i}\mid X_{i-1}]\\ &= X_{i-1}+\mathbf{E}[Z_{i}] &\quad (\mbox{independence of coin flips})\\ &= X_{i-1} \end{align} }[/math]


edge exposure in a random graph
Consider a random graph [math]\displaystyle{ G }[/math] generated as follows. Let [math]\displaystyle{ [n] }[/math] be the set of vertices, and let [math]\displaystyle{ [m]={[n]\choose 2} }[/math] be the set of all possible edges. For convenience, we enumerate these potential edges by [math]\displaystyle{ e_1,\ldots, e_m }[/math]. For each potential edge [math]\displaystyle{ e_j }[/math], we independently flip a fair coin to decide whether the edge [math]\displaystyle{ e_j }[/math] appears in [math]\displaystyle{ G }[/math]. Let [math]\displaystyle{ I_j }[/math] be the random variable that indicates whether [math]\displaystyle{ e_j\in G }[/math]. We are interested in some graph-theoretical parameter, say chromatic number, of the random graph [math]\displaystyle{ G }[/math]. Let [math]\displaystyle{ \chi(G) }[/math] be the chromatic number of [math]\displaystyle{ G }[/math]. Let [math]\displaystyle{ X_0=\mathbf{E}[\chi(G)] }[/math], and for each [math]\displaystyle{ i\ge 1 }[/math], let [math]\displaystyle{ X_i=\mathbf{E}[\chi(G)\mid I_1,\ldots,I_{i}] }[/math], namely, the expected chromatic number of the random graph after fixing the first [math]\displaystyle{ i }[/math] edges. This process is called edges exposure of a random graph, as we "exposing" the edges one by one in a random graph.

It is nontrivial to formally verify that the edge exposure sequence for a random graph is a martingale. However, we will later see that this construction can be put into a more general context.

Generalization

The martingale can be generalized to be with respect to another sequence of random variables.

Definition (martingale, general version)
A sequence of random variables [math]\displaystyle{ Y_0,Y_1,\ldots }[/math] is a martingale with respect to the sequence [math]\displaystyle{ X_0,X_1,\ldots }[/math] if, for all [math]\displaystyle{ i\ge 0 }[/math], the following conditions hold:
  • [math]\displaystyle{ Y_i }[/math] is a function of [math]\displaystyle{ X_0,X_1,\ldots,X_i }[/math];
  • [math]\displaystyle{ \begin{align} \mathbf{E}[Y_{i+1}\mid X_0,\ldots,X_{i}]=Y_{i}. \end{align} }[/math]

Therefore, a sequence [math]\displaystyle{ X_0,X_1,\ldots }[/math] is a martingale if it is a martingale with respect to itself.

The purpose of this generalization is that we are usually more interested in a function of a sequence of random variables, rather than the sequence itself.