高级算法 (Fall 2019)/Dimension Reduction: Difference between revisions
imported>Etone |
imported>Etone |
||
Line 11: | Line 11: | ||
is called an '''embedding''' of metric space <math>X</math> into <math>Y</math>. The embedding is said to with '''distortion''' <math>\alpha\ge1</math> if for any <math>x,y\in X</math> it holds that | is called an '''embedding''' of metric space <math>X</math> into <math>Y</math>. The embedding is said to with '''distortion''' <math>\alpha\ge1</math> if for any <math>x,y\in X</math> it holds that | ||
:<math>\frac{1}{\alpha}\cdot d(x,y)\le d(\phi(x),\phi(y))\le \alpha\cdot d(x,y)</math>. | :<math>\frac{1}{\alpha}\cdot d(x,y)\le d(\phi(x),\phi(y))\le \alpha\cdot d(x,y)</math>. | ||
In particular, when an embedding reduces the dimension of the metric space, such metric embedding is usually called dimension reduction. | |||
= The Johnson-Lindenstrauss Theorem = | = The Johnson-Lindenstrauss Theorem = |
Revision as of 06:47, 15 October 2019
Metric Embedding
A metric space is a pair [math]\displaystyle{ (X,d) }[/math], where [math]\displaystyle{ X }[/math] is a set and [math]\displaystyle{ d }[/math] is a metric (or distance) on [math]\displaystyle{ X }[/math], i.e., a function
- [math]\displaystyle{ d:X^2\to\mathbb{R}_{\ge 0} }[/math]
such that for any [math]\displaystyle{ x,y,z\in X }[/math], the following axioms hold:
- (identity of indiscernibles) [math]\displaystyle{ d(x,y)=0\Leftrightarrow x=y }[/math]
- (symmetry) [math]\displaystyle{ d(x,y)=d(y,x) }[/math]
- (triangle inequality) [math]\displaystyle{ d(x,z)\le d(x,y)+d(y,z) }[/math]
Let [math]\displaystyle{ (X,d_X) }[/math] and [math]\displaystyle{ (Y,d_Y) }[/math] be two metric spaces. A mapping
- [math]\displaystyle{ \phi:X\to Y }[/math]
is called an embedding of metric space [math]\displaystyle{ X }[/math] into [math]\displaystyle{ Y }[/math]. The embedding is said to with distortion [math]\displaystyle{ \alpha\ge1 }[/math] if for any [math]\displaystyle{ x,y\in X }[/math] it holds that
- [math]\displaystyle{ \frac{1}{\alpha}\cdot d(x,y)\le d(\phi(x),\phi(y))\le \alpha\cdot d(x,y) }[/math].
In particular, when an embedding reduces the dimension of the metric space, such metric embedding is usually called dimension reduction.