高级算法 (Fall 2019)/Dimension Reduction: Difference between revisions

From TCS Wiki
Jump to navigation Jump to search
imported>Etone
imported>Etone
Line 15: Line 15:


= The Johnson-Lindenstrauss Theorem =
= The Johnson-Lindenstrauss Theorem =
The '''Johnson-Lindenstrauss Theorem''' ('''JLT''') is a fundamental result for dimension reduction in Euclidian space.


= Nearest Neighbor Search (NNS)=
= Nearest Neighbor Search (NNS)=


= Locality-Sensitive Hashing (LSH)=
= Locality-Sensitive Hashing (LSH)=

Revision as of 06:48, 15 October 2019

Metric Embedding

A metric space is a pair [math]\displaystyle{ (X,d) }[/math], where [math]\displaystyle{ X }[/math] is a set and [math]\displaystyle{ d }[/math] is a metric (or distance) on [math]\displaystyle{ X }[/math], i.e., a function

[math]\displaystyle{ d:X^2\to\mathbb{R}_{\ge 0} }[/math]

such that for any [math]\displaystyle{ x,y,z\in X }[/math], the following axioms hold:

  1. (identity of indiscernibles) [math]\displaystyle{ d(x,y)=0\Leftrightarrow x=y }[/math]
  2. (symmetry) [math]\displaystyle{ d(x,y)=d(y,x) }[/math]
  3. (triangle inequality) [math]\displaystyle{ d(x,z)\le d(x,y)+d(y,z) }[/math]

Let [math]\displaystyle{ (X,d_X) }[/math] and [math]\displaystyle{ (Y,d_Y) }[/math] be two metric spaces. A mapping

[math]\displaystyle{ \phi:X\to Y }[/math]

is called an embedding of metric space [math]\displaystyle{ X }[/math] into [math]\displaystyle{ Y }[/math]. The embedding is said to with distortion [math]\displaystyle{ \alpha\ge1 }[/math] if for any [math]\displaystyle{ x,y\in X }[/math] it holds that

[math]\displaystyle{ \frac{1}{\alpha}\cdot d(x,y)\le d(\phi(x),\phi(y))\le \alpha\cdot d(x,y) }[/math].

In particular, when an embedding reduces the dimension of the metric space, such metric embedding is usually called dimension reduction.

The Johnson-Lindenstrauss Theorem

The Johnson-Lindenstrauss Theorem (JLT) is a fundamental result for dimension reduction in Euclidian space.

Nearest Neighbor Search (NNS)

Locality-Sensitive Hashing (LSH)