组合数学 (Fall 2019)/Problem Set 2: Difference between revisions

From TCS Wiki
Jump to navigation Jump to search
imported>Haimin
No edit summary
imported>Haimin
No edit summary
Line 2: Line 2:


== Problem 1 ==
== Problem 1 ==
假设我们班上有n+2个人,其中两个人是DNA完全相同的双胞胎。我们收上n+2份作业后,将这些作业打乱后发回给全班同学,每人一份。要求每个人不可以收到自己那一份作业或者与自己DNA相同的人的作业。令<math>T_n</math>表示满足这个要求的发回作业的方式,问:
假设我们班上有<math>n+2</math>个人,其中两个人是DNA完全相同的双胞胎。我们收上<math>n+2</math>份作业后,将这些作业打乱后发回给全班同学,每人一份。要求每个人不可以收到自己那一份作业或者与自己DNA相同的人的作业。令<math>T_n</math>表示满足这个要求的发回作业的方式,问:
* 计算<math>T_n</math>是多少;
* 计算<math>T_n</math>是多少;
* 在<math>n\to\infty</math>时,随机重排并发回作业后,满足上述要求的概率是多少。
* 在<math>n\to\infty</math>时,随机重排并发回作业后,满足上述要求的概率是多少。
Line 17: Line 17:
*直接写出三种颜色出现的次数一样多的次数。可以借助一些数学软件如Mathematica的帮助。
*直接写出三种颜色出现的次数一样多的次数。可以借助一些数学软件如Mathematica的帮助。


== Problem 3 ==
== Problem 4 ==
(All permutation are supposed to have an equal probability of selection).  
(All permutation are supposed to have an equal probability of selection).  
* What is the probability that the cycle containing 1 has length k?
* What is the probability that the cycle containing 1 has length k?
* What is the expected number of cycles?
* What is the expected number of cycles?
== Problem 5 ==
Let <math>A</math> be an arbitrary set of <math>k</math> different vertices chosen from distinct vertices <math>1,2,\dots,n</math>. There are <math>T_{n,k}</math> forests on <math>n</math> distinct vertices with exactly <math>m</math> connected components that each element of <math>A</math> is in a different tree.
* Prove <math>T_{n,k}=\sum_{i=0}^{n-k}\binom{n-k}{i}T_{n-1,k-1+i}</math>.
* Prove <math>T_{n,k}=k\cdot n^{n-k-1}</math>.

Revision as of 05:58, 15 October 2019

Under Construction

Problem 1

假设我们班上有[math]\displaystyle{ n+2 }[/math]个人,其中两个人是DNA完全相同的双胞胎。我们收上[math]\displaystyle{ n+2 }[/math]份作业后,将这些作业打乱后发回给全班同学,每人一份。要求每个人不可以收到自己那一份作业或者与自己DNA相同的人的作业。令[math]\displaystyle{ T_n }[/math]表示满足这个要求的发回作业的方式,问:

  • 计算[math]\displaystyle{ T_n }[/math]是多少;
  • [math]\displaystyle{ n\to\infty }[/math]时,随机重排并发回作业后,满足上述要求的概率是多少。

Problem 2

你要设计一个标志,以下形状中的12条等长线段可以分别由红、绿、蓝三色之一构成。要求考虑这个形状的“转动”和“反转”两种对称。

    __
 __|  |__
|__    __|
   |__|
  • 定义对称构成的群,可以通过生成元定义,也可以直接把元素都写出来;
  • 写出cycle index和pattern inventory;
  • 直接写出三种颜色出现的次数一样多的次数。可以借助一些数学软件如Mathematica的帮助。

Problem 4

(All permutation are supposed to have an equal probability of selection).

  • What is the probability that the cycle containing 1 has length k?
  • What is the expected number of cycles?

Problem 5

Let [math]\displaystyle{ A }[/math] be an arbitrary set of [math]\displaystyle{ k }[/math] different vertices chosen from distinct vertices [math]\displaystyle{ 1,2,\dots,n }[/math]. There are [math]\displaystyle{ T_{n,k} }[/math] forests on [math]\displaystyle{ n }[/math] distinct vertices with exactly [math]\displaystyle{ m }[/math] connected components that each element of [math]\displaystyle{ A }[/math] is in a different tree.

  • Prove [math]\displaystyle{ T_{n,k}=\sum_{i=0}^{n-k}\binom{n-k}{i}T_{n-1,k-1+i} }[/math].
  • Prove [math]\displaystyle{ T_{n,k}=k\cdot n^{n-k-1} }[/math].